我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

水稻逆境相关转录因子研究进展(PDF)

《广西植物》[ISSN:1000-3142/CN:45-1134/Q]

期数:
2015年06期
页码:
942
栏目:
综述
出版日期:
2015-11-20

文章信息/Info

Title:
Research advance of the transcription factors related to stress resistances in rice
文章编号:
1000-3142(2015)06-0942-06
作者:
罗成科* 肖国举 李 茜
宁夏大学 新技术应用研究开发中心, 银川750021
Author(s):
LUO Cheng-Ke* XIAO Guo-Ju LI Qian
Development Center of New Technique Application and Research, Ningxia University, Yinchuan 750021, China
关键词:
水稻 逆境胁迫 抗逆性 转录因子 基因表达
Keywords:
rice adversity stress stress resistance transcriptional factor gene expression
分类号:
Q945.78, Q786
DOI:
10.11931/guihaia.gxzw201404033
文献标识码:
A
摘要:
干旱、盐碱、高温和低温等逆境因子胁迫水稻的生长发育,进而影响水稻的产量和品质。因此,研究水稻的抗逆性,尤其是揭示其抗逆分子机理具有重要的生物学意义。近年来,水稻抗逆分子机理的研究主要集中在转录因子及其分子调控机制方面。在水稻中,目前研究较多的转录因子类型主要有bZIP、MYB/MYC、WRKY、AP2/EREBP和NAC,它们的结构通常由DNA结合结构域、转录活化结构域、寡聚化位点和核定位信号组成。转录因子在水稻逆境信号转导途径中起着中心调节作用,它们将逆境信号传递和放大,通过与目的基因启动子区中顺式作用元件特异结合,调控下游多个逆境相关基因的表达,从而引起水稻对逆境应答反应,最终实现水稻获得综合抗逆性的提升。该文简要概述了植物转录因子的调控机制、结构特点、分类与功能特性,重点论述了转录因子在水稻抗逆中的作用,指出了转录因子应用过程中转基因水稻产生的负效应问题,并提出了解决负效应问题的研究思路,同时展望了今后转录因子的研究前景,以期为挖掘和应用新的水稻转录因子基因以及阐明其抗逆调控机制提供理论依据。
Abstract:
Adverse environmental factors,such as drought,salinization,high temperature and low temperature,severely threaten rice growth and development, and then damage rice yield and quality. Therefore,the research on rice resistance, especially dissecting molecular mechanism of rice, has important biological significance. In recent years,the reports on molecular mechanism of rice resistance have been mainly focused on isolating and identifying transcriptional factor genes as well as their regulatory mechanisms. For example, several main types of transcriptional factors, such as bZIP,MYB/ MYC,WRKY,AP2/EREBP and NAC families,were relatively clearly studied in rice. Each of these transcriptional factors was usually composed of a DNA-binding domain,a transcription regulation domain,a oligomerization site and a nuclear localization domain. Transcriptional factors played a pivotal role in the adversity signal transduction pathways of rice,they acted as the integrators of environmental factors to transmit and amplify adversity signal,and then regulated many of stress-related genes expression by specifically interacting with cis-acting elements existed in the promoter sequences of target genes, which made rice response to adversity stresses,eventually confers enhanced comprehensive stress resistances in rice. In this review, the regulatory mechanisms,structural characteristics,classification and functional properties of transcriptional factors are summarized,their regulatory roles in the stress response and tolerance of rice were discussed,the negative effects of genetically modified rice in the process of transcriptional factors application were mentioned,and research approaches of solving the negative effects problem were suggested,as well as the future study of transcriptional factors were discussed. Overall,the aim of this paper was to provide the basis for identifying and applying new transcriptional factor genes from rice,and clarifying their molecular mechanism in rice stress resistances.

参考文献/References

Chen JQ,Meng XP,Zhang Y,et al. 2008. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice[J]. Biotechnol Lett,30(12):2 191-2 198
Cui M,Zhang WJ,Zhang Q,et al. 2011. Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice[J]. Plant Physiol Biochem,49(12):1 384-1 391
Dubos C,Gourrierec JL,Baudry A,et al. 2008. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana[J]. Plant J,55(6):940-953
El-kereamy A,Bi YM,Ranathunge K,et al. 2012. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism[J]. PLoS ONE,7(12):e52030
Eulgem T,Rushton PJ,Robatzek S,et al. 2000. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci,5(5):199-206
Feller A,Machemer K,Braun EL,2011. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. Plant J,66(1):94-116
Fukao T,Yeung E,Bailey-Serres J. 2011. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice[J]. Plant Cell,23(1):412-427
Hu HH,Dai MQ,Yao JL,et al. 2006. Overexpressing a NAM,ATAF,and CUC(NAC)transcription factor enhances drought resistance and salt tolerance in rice[J]. Proc Nat Acad Sci USA,103(35):12 987-12 992
Hu HH,You J,Fang YJ,et al. 2008. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant Mol Biol,67(1-2):169-181
Huang XH,Zhao Y,Wei XH,et al. 2011. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm[J]. Nat Genet,44(1):32-39
Jeong JS,Kim YS,Baek KH,et al. 2010. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions[J]. Plant Physiol,153(1):185-197
Jeong JS,Kim YS,Redillas MC,et al. 2013. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field[J]. Plant Biotechnol J,11(1):101-114
Jia L,Clegg MT,Jiang T. 2004. Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes[J]. Plant Physiol,134(2):575-585
Kang K,Park S,Natsagdorj U,et al. 2011. Methanol is an endogenous elicitor molecule for the synthesis of tryptophan and tryptophan-derived secondary metabolites upon senescence of detached rice leaves[J]. Plant J,66(2):247-257
Liu Q,Zhang GY,Chen SY. 2001. Structure and regulatory function of plant transcription factors[J]. Chin Sci Bull,46(4):271-278
Lu GJ,Gao CX,Zheng XN,et al. 2009. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice[J]. Planta,229(3):605-615
Lu TT,Lu GJ,Fan DL,et al. 2010. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq[J]. Gen Res, 20(9):1 238-1 249
Nakashima K,Ito Y,Yamaguchi-Shinozaki K. 2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses[J]. Plant Physiol,149(1):88-95
Nakashima K,Tran LS,Van ND,et al. 2007. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. Plant J,51(4):617-630
Nakano T,Suzuki K,Fujimura T,et al. 2006. Genome wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol,140(2):411-432
Nuruzzaman M,Manimekalai R,Sharoni AM,et al. 2010. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene,465(1-2):30-44
Oh SJ,Kim YS,Kwon CW,et al. 2009. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions[J]. Plant Physiol,150(3):1 368-1 379
Olsen AN,Ernst HA,Leggio LL,et al. 2005. NAC transcription factors:structurally distinct,functionally diverse[J]. Trends Plant Sci,10(2):79-87
RedillasMC,Jeong JS,Kim YS,et al. 2012. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions[J]. Plant Biotechnol J,10(7):792-805
Riechmann JL,Ratcliffe OJ. 2000. A genomic perspective on plant transcription factors[J]. Curr Opin Plant Biol,3(5):423-434
Rushton PJ,Somssich IE,Ringler P,et al. 2010. WRKY transcription factors[J]. Trends Plant Sci,15(5):247-258
Schmidt R,Schippers JM,Mieulet D,et al. 2013. MULTIPASS,a rice R2R3-type MYB transcription factor,regulates adaptive growth by integrating multiple hormonal pathways[J]. Plant J,76(2):258-273
Schütze K,Harter K,Chaban C. 2008. Post-translational regulation of plant bZIP factors[J]. Trends Plant Sci,13(5):247-255
Seki M,Kamei A,Yamaguchi-Shinozaki K,et al. 2003. Molecular responses to drought,salinity and frost:common and different paths for plant protection[J]. Curr Opin Biotechnol,14(2):194-199
Seo JS,Joo J,Kim M J,et al. 2011. OsbHLH148,a basic helix-loop-helix protein,interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice[J]. Plant J,65(6):907-921
Shen HS,Liu CT,Zhang Y,et al. 2012. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice[J]. Plant Mol Biol,80(3):241-253
Shinozaki K,Yamaguchi-Shinozaki K,Seki M. 2003. Regulatory network of gene expression in the drought and cold stress responses[J]. Curr Opin Plant Biol,6(5):410-417
Song Y,Ai CR,Jing SJ,et al. 2010. Research progress on functional analysis of rice WRKY genes[J]. Rice Sci,17(1):60-72
Tang N,Zhang H,Li XH,et al. 2012. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice[J]. Plant Physiol,158(4):1 755-1 768
Tao Z,Kou YJ,Liu HB,et al. 2011. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. J Exp Bot,62(14):4 863-4 874
Wang QY,Guan YC,Wu YR,et al. 2008. Overexpression of a rice OsDREB1F gene increases salt,drought,and low temperature tolerance in both Arabidopsis and rice[J]. Plant Mol Biol,67(6):589-602
Wang YJ,Zhang ZG,He XJ,et al. 2003. A rice transcription factor OsbHLH1 is involved in cold stress response[J]. Theor Appl Genet,107(8):1 402-1 409
Wu XL,Shiroto Y,Kishitani S,et al. 2009. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Rep,28(1):21-30 Xiang Y,Tang N,Du H,et al. 2008. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J]. Plant Physiol,148(4):1 938-1 952
Xie KB,Wu CQ,Xiong LZ. 2006. Genomic organization,differential expression and interaction of SQUAMOSA Promoter-Binding-Like transcription factors and microRNA156 in rice[J]. Plant Physiol,142(1):280-293
Xiong YQ,Liu TY,Tian CG,et al. 2005. Transcription factors in rice:a genome-wide comparative analysis between monocots and eudicots[J]. Plant Mol Biol,59(1):191-203
Yang A,Dai XY,Zhang WH. 2012. A R2R3-type MYB gene,OsMYB2,is involved in salt,cold,and dehydration tolerance in rice[J]. J Exp Bot,63(7):2 541-2 556
Yu LH,Chen X,Wang Z,et al. 2013. Arabidopsis enhanced drought Tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty[J]. Plant Physiol,162(3):1 378-1 391
Zhang CQ,Xu Y,Lu Y,et al. 2011. The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice[J]. Planta,234(3):541-554
Zou MJ,Guan YC,Ren HB,et al. 2008. A bZIP transcription factor,OsABI5,is involved in rice fertility and stress tolerance[J]. Plant Mol Biol,66(6):675-683
Zhu JK. 2002. Salt and drought stress signal transduction in plants[J]. Ann Rev Plant Biol,53:247-273

备注/Memo

备注/Memo:
收稿日期: 2014-06-20修回日期: 2014-09-23
基金项目: 宁夏大学自然科学基金(ZR1322); 宁夏自然科学基金(NZ14034)。
作者简介: 罗成科(1979-),男(回族),宁夏海原人,博士,副研究员,主要从事植物抗逆分子生物学研究,(E-mail)chkluo2002@163.com。 *
更新日期/Last Update: 2015-11-20