我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

罗汉果SgHMGR基因的克隆、分析及原核表达(PDF)

《广西植物》[ISSN:1000-3142/CN:45-1134/Q]

期数:
2015年06期
页码:
796-801
栏目:
罗汉果专题论文
出版日期:
2015-11-20

文章信息/Info

Title:
Cloning,bioinformatics analysis and prokaryotic expression of SgHMGR in Siraitia grosvenorii
文章编号:
1000-3142(2015)06-0796-06
作者:
赵 欢1 莫长明2 唐 其3 白隆华2 马小军1*
1. 中国医学科学院 北京协和医学院 药用植物研究所, 北京 100193; 2. 广西药用植物园, 南宁 530023; 3. 湖南农业大学 园艺园林学院, 长沙 410128
Author(s):
ZHAO Huan1 MO Chang-Ming2 TANG Qi3 BAI Long-Hua2 MA Xiao-Jun1*
1. Institute of Medicinal Plant Development of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; 2. Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; 3. College of Horticulture & Landscape, Hunan Agriculture University, Changsha 410128, China
关键词:
罗汉果 3-羟基-3-甲基戊二酸单酰辅酶A还原酶 克隆 原核表达
Keywords:
Siraitia grosvenorii HMG-CoA Reductase cloning prokaryotic expression
分类号:
Q943.2
DOI:
10.11931/guihaia.gxzw201403023
文献标识码:
A
摘要:
罗汉果甜苷V是一种葫芦烷型四环三萜类物质,作为主要的活性成分和甜味成分存在于成熟果实中,3-羟基-3-甲基戊二酸单酰辅酶A还原酶(HMGR)作为萜类化合物生物合成途径中的第一个限速酶,位于甲羟戊酸(MVA)途径中,是罗汉果甜苷V生物合成途径中的重要调控位点。为了深入了解罗汉果甜苷V的生物合成途径,该研究从罗汉果转录组数据中获得一条编码HMGR的unigene,以授粉后3 d的幼果作为实验材料,通过RACE技术获得了1 926 bp的全长序列,经过生物信息学软件分析,发现该基因含有1 749 bp的开放阅读框,编码582 氨基酸残基,含2段跨膜区,分别位于50~72 aa和93~115 aa,亚细胞定位预测位于质膜或内质网上,预测该蛋白没有信号肽,系统进化树分析显示与同科植物黄瓜和甜瓜中HMGR基因的同源性最高。该研究采取去掉N端跨膜区的方法,构建原核表达载体转化大肠杆菌BL21(DE3),经IPTG诱导在上清和沉淀中均有融合蛋白出现,尤其在25 ℃诱导过夜后上清中表达最明显。该文是首次对SgHMGR基因全长序列的克隆及原核表达的功能验证,为进一步深化SgHMGR基因在罗汉果甜苷V生物合成途径中的功能及分子调控研究打下基础。
Abstract:
Siraitia grosvenorii, belonging to Cucurbitaceae, is an herbaceous perennial plant native to South China and north Thailand, and mostly prevalent in Guilin City of Guangxi Zhuang Autonomous Region. The fruits are widely used as Chinese traditional medicine and meanwhile they contain extremely sweet flesh. As the main active component and sweetner ingredient, mogroside V is a kind of cucurbitane type tetracyclic triterpenes which only exists in the ripe fruits of S. grosvenorii. In the proposed mogoroside V biosynthetic pathway, there are two independent pathways for triterpenoid biosynthesis(MVA pathway and MEP pathway). 3-Hydroxy-3-methylglutaryl coenzyme-A reductase(HMGR), the first rate-limiting enzyme in mevalonate(MVA)pathway of terpenes biosynthesis, is the important regulatory site in mogroside V biosynthetic pathway in S. grosvenorii. However, there is little knowledge about function study of key genes involved in this pathway. In order to further understand mogroside V biosynthetic pathway, the full-length of SgHMGR was obtained by RACE-PCR method from 3 d after fertilization(DAF)of S. grosvenorii fruits based on the unigene of HMGR in transcriptome data, and further conducted by bioinformatic analysis. The recombinant prokaryotic vector was constructed using pET-32a and then transformed into Escherichia coli BL21(DE3)for expression. The results showed that a full-length SgHMGR cDNA was cloned with 1 927 bp and it contained 1 749 bp open reading frame(ORF)encoding a protein of 582 amino acids(aa)(GenBank No.HQ128556.1). The theoretical molecular weight(MW)and isoelectric point(PI)of this predicted protein were 62.6 kD and 8.18, respectively. The predicted protein contained the conserved domain of HMGR and proved it to be a member of HMGR family. SgHMGR protein had the high homology with Cucumis sativus and Cucumis melo of Cucurbitaceae plants, which were both 88%. Its subcellular localization was predicted in plasma membrane or endoplasm. By HMGR gene structure prediction analysis, the predicted SgHMGR protein had two transmembrane domains in N-terminal which were located in 50-72 aa and 93-115 aa, respectively. Besides, there were no predicted signal peptides for SgHMGR protein. In order to avoid the influence of transmembrane domains on the heterologous expression, SgHMGR from 116 amino acids with no transmembrane domains was cloned and named as ‘SgHMGR-1’ in this study. The MW and PI of SgHMGR-1 were 49.6 kD and 5.95. The recombined vector was transformed into E. coli BL21(DE3)and expressed by IPTG. The prediction indicated that the MW and PI of the recombined protein of SgHMGR-1 and His were 65.8 kD and 5.95. The results of SDS-PAGE and Western blotting demonstrated that the fusion protein could be expressed in both supernatant and pellet after induction by IPTG overnight and it had highest expression in supernatant at 25 °C. This is the first report about cloning of full-length SgHMGR cDNA and its prokaryotic expression, and the recombined prokaryotic expression vector of SgHMGR was constructed successfully and could be expressed in BL21(DE3)of E.coli, which would lay foundation for further understanding of SgHMGR gene function and molecular regulation in mogroside V biosynthesis and provide reference about HMGR gene function study for other non-model plants.

参考文献/References

Aquila S, Hunaini AM, Abdin MZ,et al. 2009. Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthsis in transgenic Artemisia annual plant[J]. Plant Med, 75(13): 1 453-1 458
Chiu CH, Wang R, Lee CC, et al. 2013. Biotransformation of mogrosides from Siraitia grosvenorii Swingle by Saccharomyces cerevisiae[J]. J Agric Food Chem, 61(29): 7 127-7 134
Enjuto M, Balcells L, Campos N, et al. 1994. Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme[J]. Proc Natl Acad Sci USA, 91(3): 927-931
Fu W, Ma XJ, Tang Q, et al. 2012. Karyotype analysis and genetic variation of a mutant in Siraitia grosvenorii[J]. Mol Biol Rep, 39(2): 1 247-1 252
Haralampidis K, Trojanowska M, Osbourn AE. 2002. Biosynthesis of triterpenoid saponins in plants[J]. Adv Biochem Eng Biotechnol, 75: 31-49
Harker M, Holmberg N, Clayton JC, et al. 2003. Enhancement of seed phytosterol levels by expression of an N-terminal truncated Hevea brasiliensis(rubber tree)3-hydroxy-3-methylglutaryl-CoA reductase[J]. Plant Biotechnol J, 1(2):113-121
Kato-Emori S, Higashi K, Hosoya K, et al. 2001. Cloning and characterization of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase in melon(Cucumis melo L. reticulatus)[J]. Mol Genet Genomics, 265(1): 135-142
Kim YK, Kim JK, Kim YB, et al. 2013. Enhanced accumulation of phytosterol and triterpene in hairy root cultures of Platycodon grandiflorum by overexpression of Panax ginseng 3-hydroxy-3-methylglutaryl-coenzyme A reductase[J]. J Agric Food Chem, 61(8):1 928-1 934
Liu LH, Ma XJ, Wei JH, et al. 2011. The first genetic linkage map of Luohanguo(Siraitia grosvenorii)based on ISSR and SRAP markers[J]. Genome, 54(1): 19-25
Liu Y, Xu QX, Wang XY, et al. 2012. Analysis on correlation between 3-hydroxy-3-methylglutary-coenzyme A reductase gene polymorphism of Glycyrrhiza uralensis and content of glycyrrhizic acid[J]. Chin J Chin Mat Med, 37(24): 3 789-3 792
Liu YJ(刘雨佳),Zhang XN(张夏楠),Cheng QQ(程琪庆),et al. 2013. Advances in studies on 3-hydroxy-3-methylglutaryl coenzyme A reductase in terpenoids biosynthesis of medicinal plants(药用植物萜类生物合成HMGR基因研究进展)[J]. Chin J Chin Mat Med(中国中药杂志),38(19):3 226-3 233
Luo HM, Song JY, Li XY, et al. 2013. Cloning and expression analysis of a key device of HMGR gene involved in ginsenoside biosynthesis of Panax ginseng via synthetic biology approach[J]. Acta Pharm Sin, 48(2): 219-227
Mo CM(莫长明),Wang HY(王海英),Ma XJ(马小军),et al. 2014. Physiological regularities of Siraitia grosvenorii mogroside V biosynthesis(罗汉果甜苷V合成生理规律的研究)[J]. J S Chin Agric Univ(华南农业大学学报),35(1):99-105
Mrayam D, Ali MN, Ghorbanali NZ. 2012. Bioinformatics study of the 3-hydroxy-3methylglotaryl-coenzyme A reductase(HMGR)gene in Gramineae[J]. Mol Biol Rep, 39: 8 925-8 935
Rui X, Caiqin L, Wangjin L, et al. 2012. 3-Hydroxy-3-methylglutaryl coenzyme A reductase 1(HMG1)is highly associated with the cell division during the early stage of fruit development which determines the final fruit size in Litchi chinensis[J]. Gene, 498(1): 28-35
Tamura K, Stecher G, Peterson D, et al. 2013. MEGA6: molecular evolutionary genetics analysis version 6. 0[J]. Mol Biol Evol, 30(12):2 725-2 729
Tang Q, Ma XJ, Mo CM, et al. 2011. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis[J]. BMC Genomics, 12:343 Wei RC(韦荣昌),Zhao H(赵欢),Ma XJ(马小军),et al. 2014. Extraction of total RNA and cloning of SgDHAR gene from Siraitia grosvenorii(罗汉果果实RNA的提取及SgDHAR基因的克隆与表达)[J]. Acta Pharm Sin(药学学报),49(1):115-123
Xu YH(徐艳红), Yang X(杨欣),Zhang Z(张争), et al. 2013. Cloning and expression analysis of HMG-CoA reductase from Aquilaria sinensis(Lour. )Gilg(白森香3-羟基-3-甲基戊二酰辅酶A还原酶ASHMGR2的克隆及表达分析)[J]. Acta Pharm Sin(药学学报), 48(6): 953-959
Zeng LH(曾黎辉),Wu JS(吴金寿),Ke SS(柯石山),et al. 2005. Establishment of the explant regeneration system for genetic transformantion and transformation by Agrobacterium rhizogene of Siraitia grosvenorii(Swingle)C. Jeffrey(罗汉果遗传转化受体再生体系的建立及发根农杆菌转化初探)[J]. Chin Agric Sci Bull(中国农学通报),21(12):403-406

备注/Memo

备注/Memo:
收稿日期: 2014-07-13修回日期: 2014-12-16
基金项目: 国家自然基金面上项目(81373914); 广西自然科学基金青年基金(2011GXNSFB018088)。
作者简介: 赵欢(1986-),女,河北行唐人,博士研究生,主要从事罗汉果分子生物学研究,(E-mail)53522722@163.com。 *通讯作者: 马小军,研究员,主要从事药用植物分子育种研究,(E-mail)mayixuan10@163.com。
更新日期/Last Update: 2015-11-20