我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

滇龙胆GrWRKY5基因的克隆和植物表达载体构建(PDF)

《广西植物》[ISSN:1000-3142/CN:45-1134/Q]

期数:
2015年05期
页码:
741-747
栏目:
遗传与育种
出版日期:
2015-09-15

文章信息/Info

Title:
Cloning and construction of plant expression vector of GrWRKY5 gene in Gentiana rigescens
文章编号:
1000-3142(2015)05-0741-07
作者:
王彩云14 李富生1 李 涛2 李彩霞2 张晓东2* 王元忠3
1. 云南农业大学 农学与生物技术学院, 昆明 650201; 2. 玉溪师范学院 资源环境学院, 云南 玉溪 653100; 3. 云南省农业科学院 药用植物研究所, 昆明 650223; 4. 贵州省毕节市中药研究所, 贵州 毕节 551700
Author(s):
WANG Cai-Yun14 LI Fu-Sheng1 LI Tao2 LI Cai-Xia2 ZHANG Xiao-Dong2* WANG Yuan-Zhong3
1. College of Agriculture and Biological Technology, Yunnan Agriculture University, Kunming 650201, China; 2. College of Resources and Environment, Yuxi Normal University, Yuxi 653100, China; 3. Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650223, China; 4. Bijie Institute of Traditional Chinese Medicine, Bijie 551700, China
关键词:
滇龙胆 GrWRKY5 基因克隆 序列分析 植物表达载体构建
Keywords:
Gentiana rigescens GrWRKY5 gene cloning sequence analysis coustruction of plant expression vector
分类号:
Q943.2,Q786
DOI:
10.11931/guihaia.gxzw201312034
文献标识码:
A
摘要:
WRKY蛋白是目前被广泛研究的一类DNA特异结合转录因子,在植物次生代谢物生物合成、植物生长和发育及衰老等生理过程以及生物、非生物防御反应中起重要的调控作用。该研究从滇龙胆幼叶中克隆萜类合成的关键转录因子基因GrWRKY5,并利用生物信息学方法对基因功能进行预测,构建植物过表达载体。结果表明:根据三年生滇龙胆转录组GrWRKY5基因序列,设计特异性引物,通过RT-PCR扩增GrWRKY5 ORF序列,并进行TA克隆、测序和序列分析; 构建入门载体pENTRTM2B-GrWRKY5,经LR反应后构建植物过表达载体。GrWRKY5 ORF全长591 bp,编码196个氨基酸,GenBank登录号为KF922375,其中第167与170之间的色氨酸(W)、精氨酸(R)、赖氨酸(K)、酪氨酸(Y)组成WRKY蛋白所特有的“WRKY”结构。序列分析表明GrWRKY5是WRKY超家族的成员。经生物信息学在线软件分析发现,GrWRKY5的等电点为6.29,脂肪族指数为61.37,不稳定指数为57.80。总平均疏水性为-0.708,为亲水蛋白; 含有20种氨基酸,其中天冬氨酸(Asp)和脯氨酸(Pro)含量最高,为8.1%; 半胱氨酸(Cys)含量最低,仅为1.0%。氨基酸序列系统发育分析表明,GrWRKY5与拟南芥中WRKY家族中遗传距离最接近的是WRKY27,属于Ⅱe类成员; 与CrWRKY22和VvWRKY22蛋白的亲缘关系较近; 与JcWRKY47和TcWRKY27亲缘关系较远; BLASTp结果显示,GrWRKY5与欧洲油菜BnWRKY27-1的同源性最高(为69%); 与拟南芥AaWRKY22的一致性最低(仅为31%)。以Gateway入门载体pENTR2B和目的载体pK2GW7为基础,成功构建了植物过表达载体pK2-35S-GrWRKY5,该载体的成功构建为该基因在拟南芥、滇龙胆等植物中的遗传转化奠定了基础,同时为WRKY基因功能的深入研究提供依据。
Abstract:
WRKY protein is a class of specific DNA-binding transcription factor widely studied at present,which plays key regulating roles in the biosynthesis of plant secondary metabolites,the physiological processes of plant growth,development,senescence and the defense reactions of both biotic and abiotic stresses. To obtain the key transcription factors involved in the terpenoid biosynthesis,a gene GrWRKY5 was cloned from the spire of Gentiana rigescens. Its bioinformatic analysis was performed to predict its functions and its plant overexpression vector was also constructed. The gene specific primers were designed according to the transcript sequence of GrWRKY5 from the transcriptome of triennial G. rigescens. The open reading frame(ORF)of GrWRKY5 was obtained by Reverse Transcription-Polymerase Chain Reaction(RT-PCR). Then TA cloning,sequencing,and sequence analysis were performed. Entry vector pENTRTM2B-GrWRKY5 was constructed,and the plant overexpression vector of pK2-35S-GrWRKY5 was obtained after LR reaction. The ORF of GrWRKY5 has a length of 591 bp and encodes a predicated protein of 196 amino acids. The GenBank accession number for GrWRKY5 is KF922375. The tryptophan(W),arginine(R),lysine(K),tyrosine(Y)between 167 and 170 in WRKY protein consist of the "WRKY" symbolic structure. Sequence analysis showed that GrWRKY5 was a member of “WRKY” superfamily. Results of bioinformation software on line analysis showed that the theoretical isoelectric point(pI),the aliphatic index and the instability index of GrWRKY5 protein were 6.29,61.37 and 57.80,separately. The GRAVY(grand average of hydropathicity)of GrWRKY5 protein was -0.708,which indicated that it belonged to hydrophilic protein. GrWRKY5 protein contained more than 20 kinds of amino acids,and the aspartic acid(Asp)and proline(Pro)accounted for the highest content(8.1%),while Cysteine(Cys)content was the lowest accounting for only 1.0%. Results of phylogenetic analysis showed that GrWRKY5 was at the same evolutionary branch with AtWRKY27,a member of class Ⅱe,and that GrWRKY5 was close to the CrWRKY22 protein of Catharanthus roseus and the VvWRKY22 protein of Vitis vinifera and was far from the JcWRKY47 protein in Jatropha curcas and the TcWRKY27 protein in Theobroma cacao. Results of BLASTp showed that GrWRKY5 protein had the highest identity(69%)with the BnWRKY27-1 protein in Brassica napus,while it had the lowest identity(31%)with the AaWRKY22 protein in Arabidopsis thaliana. The plant overexpression vector pK2-35S-GrWRKY5 which was suitable for agrobacterium tumefaciens and gene gun-mediated transformation was successfully constructed base on entry vector pENTR2B and destination vector pK2GW7 of Gateway system. The successful construction of plant overexprossion vector pK2-35S-GrWRKY5 will provide a foundation for its genetic transformation into Arabidopsis thaliana and Gentiana rigescens and provide a basis for the further study of gene function.

参考文献/References

Bi HH(毕惠惠),Wang GP(王根平),Wang CS(王成社),et al. 2013. Construction of RNAi and overexpression vectors for genetic transformation of monocotyledonous plants based on gateway technology(单子叶植物RNA干扰和过表达Gateway载体的构建)[J]. J Plant Genet Resour(植物遗传资源学报),14(1): 115-123
Dong P,Chen GY,Liu YX,et al. 2012. Molecular cloning of WRKY transcription factor sequences in wild emmer wheat(Triticum dicoccoides)[J]. Afr J Agr Res,7(47): 6 343-6 349
Eulgem T,Rushton PJ,Robatzek S,et al. 2000. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci,5(5): 199-206
Huang SX,Gao YF,Liu JK,et al. 2012. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum[J]. Mol Genet Genom,287(6): 495-513
Ishiguro S,Nakamura K. 1994. Characterization of a cDNA encoding a novel DNA-binding protein,SPF1,that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and β-amylase from sweet potato[J]. Mol Gen Genet,244(6): 563-571
Li H,Xu Y,Xiao Y,et al. 2010. Expression and functional analysis of two genes encoding transcription factors,VpWRKY1 and VpWRKY2,isolated from Chinese wild Vitis pseudoreticulata[J]. Planta,232(6): 1 325-1 337
Ma DM,Pu GB,Lei CQ,et al. 2009. Isolation and characterization of AaWRKY1,an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene,a key gene of artemisinin biosynthesis[J]. Plant Cell Physiol,50(12): 2 146-2 161
Mingyu Z,Zhengbin Z,Shouyi C,et al. 2012. WRKY transcription factor superfamily: structure,origin and functions[J]. Afr J Biotechnol,11: 8 051-8 059
Pan YJ,Cho CC,Kao YY,et al. 2009. A novel WRKY-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia[J]. J Biol Chem,284(27): 17 975-17 988
Ren X,Chen Z,Liu Y,et al. 2010. ABO3,a WRKY transcription factor,mediates plant responses to abscisic acid and drought tolerance in Arabidopsis[J]. Plant J,63(3): 417-429
Robatzek S,Somssich IE. 2002. Targets of AtWRKY6 regulation during plant senescence and pathogen defense[J]. Gen Dev,16:1 139-1 149 Rushton PJ,Somssich IE,Ringler P,et al. 2010. WRKY transcription factors[J]. Trends Plant Sci,15(5): 247-258
Shen T(沈涛),Yang MQ(杨美权),Zhao ZL(赵振玲),et al. 2011. Dynamic changes in terpenoid contents in Gentiana rigescens(滇龙胆中萜类物质积累的动态变化)[J]. Bull Bot(植物学报),46(6): 652-657 Ülker B,Somssich IE. 2004. WRKY transcription factors: from DNA binding towards biological function[J]. Curr Opin Plant Biol,7(5): 491-498
Wang CY(王彩云),Li FS(李富生),Li T(李涛),et al. 2014a. Cloning,sequence analysis and prokaryotic expression of GrGPPS gene in Gentiana rigescens(滇龙胆GrGPPS基因的克隆及其序列分析与原核表达)[J]. Chin Tradit Herb Durgs(中草药),45(14): 2 060-2 068
Wang CY(王彩云),Li FS(李富生),Li T(李涛),et al. 2014b. Cloning and prokaryotic expression of GrHMA gene in Gentiana rigescens(滇龙胆GrHMA基因的克隆和原核表达)[J]. Life Sci Res(生命科学研究),18(3):211-217
Wang CY(王彩云),Zhang XD(张晓东),Shen T(沈涛),et al. 2013. Research advance and role of WRKY in the biosynthesis of plant secondary metabolites(WRKY在植物次生代谢物合成中的作用及研究进展)[J]. Guangdong Agric Sci(广东农业科学),40(20): 137-144
Wei KF,Chen J,Chen YF,et al. 2012. Molecular phylogenetic and expression analysis of the complete WRKY Transcription factor family in maize[J]. DNA Res,19(2): 153-164
Xie Z,Zhang ZL,Zou X,et al. 2005. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiol,137(1): 176-189
Xu YH,Wang JW,Wang S,et al. 2004. Characterization of GaWRKY1,a cotton transcription factor that regulates the sesquiterpene synthase gene(+)-δ-cadinene synthase-A[J]. Plant Physiol,135(1): 507-515
Zhang J(张娟). 2009. Review on the function of WRKY transcription factor family(WRKY转录因子功能研究进展)[J]. Acat Bot Boreal-Occident Sin(西北植物学报),29(10):2 137-2 145
Zhao HW(赵恒伟),Ge F(葛锋),Sun Y(孙颖),et al. 2012. Transcription factors involved in plant terpenoid biosynthesis and their application prospect(植物萜类物质生物合成的相关转录因子及其应用前景)[J]. Chin Trad Herb Durgs(中草药),43(12): 2 512-2 519

备注/Memo

备注/Memo:
收稿日期: 2014-08-23修回日期: 2014-10-21
基金项目: 国家自然科学基金(81260608); 云南省教育厅科学研究基金重点项目(2013Z075); 国家“十二五”科技支撑计划项目(2011BAI13B02-04)。
作者简介: 王彩云(1989-),女,云南宣威人,硕士研究生,研究方向为药用植物资源评价与利用,(E-mail)wangcaiyun0716@126.com。 *通讯作者: 张晓东,博士,讲师,主要研究方向为植物代谢基因工程,(E-mail)zxd95@126.com。
更新日期/Last Update: 2015-09-15