我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

桧叶白发藓对不同氮源胁迫的形态和生理响应(PDF)

《广西植物》[ISSN:1000-3142/CN:45-1134/Q]

期数:
2015年04期
页码:
520-525
栏目:
生态与生物地理
出版日期:
2015-07-20

文章信息/Info

Title:
Growth and physiological responses of Leucobryum juniperoideum to different nitrogen stresses
作者:
王 铖12 尹丽娟2 朱瑞良13*
1. 华东师范大学 生命科学学院 生物系, 上海 200062; 2. 上海市园林科学研究所, 上海 200232; 3. 华东师范大学 上海市城市化过程和生态恢复重点实验室, 上海 200241
Author(s):
WANG Cheng12 YIN Li-Juan2 ZHU Rui-Liang13*
1. School of Life Sciences, East China Normal University, Shanghai 200062, China; 2. Shanghai Landscape Gardening Research Institute, Shanghai 200232, China; 3. Key Lab for Urban Ecological Processes and Eco-Restoration, School of Life Sciences, East China Normal University, Shanghai 200241, China
关键词:
苔藓植物 桧叶白发藓 氮沉降 生理指标
Keywords:
bryophytes Leucobryum juniperoideum nitrogen deposition physiological indexes
分类号:
Q945.79
DOI:
-
文献标识码:
A
摘要:
桧叶白发藓(Leucobryum juniperoideum)在我国东南部常见,被认为是一种理想的、适用于庭院栽培的苔藓植物,而氮是植物必需的矿质元素,但过量摄入会对其造成伤害,近年来氮沉降水平的提高对苔藓植物的多样性造成了严重影响。该研究为揭示氮沉降加剧对桧叶白发藓的影响,以经6个月断茎培养的桧叶白发藓配子体为材料,用Ca(NO3)2、NH4HCO3和NH4NO3代表三种氮源,设置2、4、8、16 gN·m-2 4个水平,以喷洒去离子水为对照,进行不同氮源的胁迫试验。结果表明:氮处理浓度的增加引起组织氮含量的显著提高,增加幅度分别为69.1%、25.7%和43.1%; 同时引起植株坏死率显著上升,增加幅度分别为16.5%、12.5%和13.9%。三种氮源处理对株高和净重的影响有显著差异,低浓度的铵态氮(4 gN·m-2)引起株高和净重的显著增加,而硝态氮和混合态氮处理差异不显著; 加氮浓度的进一步提高,引起株高和净重的减低,硝态氮处理的减低幅度最大,铵态氮的降低幅度最小。三种氮源处理均引起叶绿素含量先上升后下降,但同一水平铵态氮处理的叶绿素含量要高于其它两种氮处理,而且引起叶绿素含量下降的处理浓度要高于其它两种氮源; 三种氮源均引起SOD活性显著增加、可溶性蛋白和脯氨酸含量先升后降,但不同氮源间生理指标的变化不同步。这说明桧叶白发藓对硝态氮胁迫的响应比铵态氮敏感,硝态氮的增加对桧叶白发藓造成严重危害,而少量的铵态氮(4 gN·m-2)则能促进桧叶白发藓的生长。研究结果可作为桧叶白发藓繁殖与生产的氮源。
Abstract:
Leucobryum juniperoideum is a common bryophyte in the southeast china,which is considered to be an ideal ornamental plant used in garden. Nitrogen(N)is a kind of necessary element to plant growth, but excess N can be capable of causing serious injury to the most plants. According to recent studies, the diversity of bryophytes was severely decreased by the more and more increasing N deposition. In order to reveal the growth and physiological responses of L. juniperoideum to the intensification of N deposition, three forms of nitrogen, i.e. lime nitrate(Ca(NO3)2)representing the nitrate N, ammonium bicarbonate(NH4HCO3)representing the ammonium N and ammonium nitrate(NH4NO3 )representing the mixed N, were used in the treatments of simulating N deposition. The gametophyte material used in this experiment was propagated by shattered fragments and cultured in the greenhouse six months ahead of the first fertilization. The gradient of N concentration was 0, 2, 4, 8, 16 gN·m-2 prepared using a solution of lime nitrate, ammonium nitrate and ammonium nitrate respectively. The results showed that the tissue N contents of L. juniperoideum were raised as the increasing of the three kinds of nitrogen concentration and the increasing tissue N contents of Ca(NO3)2, NH4HCO3 and NH4NO3 were 69.1%, 25.7% and 43.1% respectively. The dead plant rate of L. juniperoideum gametophyte also increased as the three kinds of nitrogen fertilization concentration rising,but there are remarkable differences among the three kinds of nitrogen treatments, and the dead plant rate of Ca(NO3)2, NH4HCO3 and NH4NO3 were 16.5%, 12.5% and 13.9% respectively. As well as the net weight of the L. juniperoideum, the plant height came out different as the three kinds of nitrogen concentration rising. The net weight and the plant height all added by the treatments of low concentration NH4HCO3 (4 gN·m-2),but not by nitrate N and mixed N treatments, and three kinds of nitrogen treatments all cause the reduction of the net weight and the plant height as the N concentration rising. The changes of the Chlorophyll(a, b)contents by three N treatments all occurred from increase to decrease, but the Chlorophyll(a,b)contents of NH4HCO3 treatments were higher than other N forms at the same concentration, and the NH4HCO3 concentration of decreasing Chlorophyll(a, b)content was higher than Ca(NO3)2 and NH4NO3. There existed an obviously similar variation tendency of the superoxide dismutase(SOD)among the three kinds of nitrogen treatments,which increased as the N concentration rising, while the soluble protein content and the praline content increased at lower N concentration and reduced at higher N concentration. These physiological indexes were not synchronous among the three N treatments. It was demonstrated in the experiments that L. juniperoideum was more sensitive to nitrate N than ammonium N,and small ammonium N additions(4 gN·m-2)tended to increased its growth,while nitrate N additions decreased its growth. Therefore, ammonium N could be used as the N source of L. juniperoideum and the low concentration of nitrogen additions was critical to the fertilization of L. juniperoideum.

参考文献/References

Armitage HF,Britton AJ,Woodin SJ,et al. 2012. Nitrogen deposition enhances moss growth,but leads to an overall decline in habitat condition of mountain moss-sedge heath[J]. Glob Change Biol,18:290-300
Arr&#
243;niz-Crespo M,Leake JR,Horton P,et al. 2008. Bryophyte physiological responses to,and recovery from,long-term nitrogen deposition and phosphorus fertilisation in acidic grassland[J]. New Phytol,180:864-874
Ayres E,van der Wal R,Sommerkorn M,
et al. 2006. Direct uptake of soil nitrogen by mosses[J]. Biol Lett,2:286-288Cameron A J,Nickless G. 1977. Use of mosses as collectors of airborne heavy metals near a smelting complex[J]. Water Air Soil Poll,7(1):117-125
Chen ZY(
陈中颖),Li KM(李开明),Lin WS(林文实),et al. 2010. Atmospheric dry and wet deposition of nitrogen and phosphorus in the Pearl River Estuary(珠江口大气氮磷干湿沉降通量及其污染特征)[J]. Environ Poll Control(环境污染与防治),32(11):53-57
Douma JC,van Wijk MT,Lang SI,
et al. 2007. The contribution of mosses to the carbon and water exchange of arctic ecosystems: quantification and relationships with system properties[J]. Plant Cell Environ,30:1 205-1 215
Forsum &#
197;,Dahlman L,Näsholm T,et al. 2006. Nitrogen utilization by Hylocomium splendensin a boreal forest fertilization experiment[J]. Funct Ecol,20:421-426
Gordon C, Wynn JM, Woodin SJ.
2001. Impacts of increased nitrogen supply on high Arctic heath: the importance of bryophytes and phosphorus availability[J]. New Phytol,149:461-471
Granath G,Strengbom J,Rydin H.
2012. Direct physiological effects of nitrogen on Sphagnum: a greenhouse experiment[J]. Funct Ecol,26:353-364
Gundale MJ,Deluca TH,Nordin A.
2011. Bryophytes attenuate anthropogenic nitrogen nputs in boreal forests[J]. Glob Change Biol,17:2 743-2 753
Jones MLM,Oxley ERB,Ashenden TW.
2002. The influence of nitrogen deposition, competition and desiccation on growth and regeneration of Racomitrium lanuginosum(Hedw. )Brid[J]. Environ Poll,120:371-378Koranda M,Kerschbaum S,Wanek W,et al. 2007. Physiological responses of bryophytes Thuidium tamariscinum and Hylocomium splendens to increased Nitrogen deposition[J]. Ann Bot,99:161-169
Liu BY(
刘滨扬),Liu WQ(刘蔚秋),Lei CY(雷纯义),et al. 2009. Physiological responses of three bryophyte species of south china to simulated nitrogen deposition(三种苔藓植物对模拟N沉降的生理响应)[J]. Chin J Plant Ecol(植物生态学报),33
(
1):141-149Liu BY(刘滨扬),Liu WQ(刘蔚秋),Zhang YS(张以顺),et al. 2009. Physiological responses of bryophytes experienced low temperature stress to simulated nitrogen deposition(低温胁迫后苔藓植物对模拟氮沉降条件的生理响应)[J]. Chin J Plant Ecol(植物生态学报),35(3):268-274
Ljiu XY(
刘学炎), Xiao HY(肖化云), Liu CQ(刘丛强),et al. 2009. Quantif ication of atmospheric nitrogen deposition at Guiyang area based on nitrogen concentration of epilith icmosses(基于石生藓类氮含量的贵阳地区大气氮沉降)[J]. Acta Ecol Sci(生态学报),29:6 646-6 653
Paulissen MPCP,van der Ven PJM,Dees AJ,
et al. 2004. Differential effects of nitrate and ammonium on three fen bryophyte species in relation to pollutant nitrogen input[J]. New Phytol, 164:451-458
Pearce ISK,Woodin SJ,van der Wal R.
2003. Physiological and growth responses of the montane bryophyte Racomitrium lanuginosum to atmospheric nitrogen deposition[J]. New Phytol, 160:145-155
Rovere AE,Calabrese GM.
2011. Moss diversity in degraded environments under restoring in the Lago Puelo National Park(Chubut,Argentina)[J]. Rev Chil Hist Nat,84:571-580
Slavik K,Peterson BJ,Deegan LA,
et al. 2004. Long-term responses of the kuparuk river ecosystem to phosphorus fertilization[J]. Ecology,85:939-954
Salemaa M,M&#
228;kipää R,Oksanen J. 2008. Differences in the growth response of three bryophyte species to nitrogen[J]. Environ Poll,152:82-91
Salmane I,Brumelis G.
2008. The importance of the moss layer in sustaining biological diversity of Gamasina mites in coniferous forest soil[J]. Pedobiologia,52:69-76
Schrijver AD,Frenne PD,Ampoorter E,
et al. 2011. Cumulative nitrogen input drives species loss in terrestrial ecosystems[J]. Global Ecol Biogeogr,20:803-816Stevens CJ,Duprè C,Dorland E,et al. 2010. Nitrogen deposition threatens species richness of grasslands across Europe[J]. Environ Poll,158:2 940-2 945
Vellak K,Paal J,Liira J.
2003. Diversity and distribution pattern of bryophytes and vascular plants in a boreal spruce forest[J]. Silva Fenn,37:3-13
Wang C,Yin LJ,Zhu RL.
2014. The role of soil nitrogen and phosphorus in the distribution of Leucobryum juniperoideum in the Tianmu Mountain National Nature Reserve, Zhejiang,China[J]. Bryologist,117(1): 54-61
Wang XK(
王学奎). 2006. Principles and techniques of plant physiological biochemical experiment(植物生理生化实验原理和技术)[M]. Beijing(北京):Higher Education Press(高等教育出版社):278-279
Wu YH(
吴玉环),Huang GH(黄国宏),Gao Q(高谦),et al. 2001. Research advance in response and adaptation of bryophytes to environmental change(苔藓植物对环境变化的响应及适应性研究进展)[J]. Chin J Appl Ecol(应用生态学报),12(6):943-946
Zhou JC(
周婕成),Shi GT(史贵涛),Chen ZL(陈振楼),et al. 2009.
Contamination characteristics of nitrogen in rainwater of Shanghai(
上海大气氮湿沉降的污染特征)[J]. Environ Poll Control. 2009. Contamination characteristics of nitrogen in rainwater of Shanghai(上海大气氮湿沉降的污染特征)[J]. 污染与防治),31(11):30-34

备注/Memo

备注/Memo:
收稿日期: 2014-09-19修回日期: 2014-12-25
基金项目: 国家林业局“948”项目(2011-4-72)
作者简介: 王铖(1974-),男,四川名山人,博士研究生,研究方向为苔藓植物学,(E-mail)landscapeplant@163.com。*通讯作者: 朱瑞良,教授,博士生导师,研究方向为苔藓植物分类与系统进化,(E-mail)lejeunea@163.com。
更新日期/Last Update: 2015-07-20