我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

不同强度的红光和蓝光下菜豆叶片的荧光特性(PDF)

《广西植物》[ISSN:1000-3142/CN:45-1134/Q]

期数:
2015年03期
页码:
338-342
栏目:
植物生理学
出版日期:
2015-05-20

文章信息/Info

Title:
Effects of different intensities of red or blue on chlorophyll fluorescence characteristics of bean leaves
文章编号:
1000-3142(2015)03-0338-05
作者:
冯汉青* 焦青松 田武英 贾凌云
西北师范大学 生命科学学院, 兰州 730070
Author(s):
FENG Han-Qing* JIAO Qing-Song TIAN Wu-Ying JIA Ling-Yun
College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
关键词:
菜豆 光强 红光/蓝光 叶绿素荧光参数
Keywords:
bean light intensity red/blue light chlorophyll fluorescence parameters
分类号:
Q945.79; S181
DOI:
10.11931/guihaia.gxzw201403002
文献标识码:
A
摘要:
光质和光强均是影响植物光合作用的重要外部因素,该文以菜豆(Phaseolus vulgaris)为材料,通过叶绿素荧光技术比较研究了菜豆叶片在不同光强的红光和蓝光下叶绿素荧光特性的变化规律。结果表明:随着红光和蓝光光强的增加,菜豆叶片的光适应下的最大光化学效率(Fv’/Fm)呈下降趋势,但与在红光下相比,蓝光下叶片的Fv’/Fm值较高。随着蓝光光强的增加,菜豆叶片PSⅡ实际光化学效率(Y(Ⅱ))和光化学猝灭系数(qPqL)先呈上升趋势之后逐渐趋于平稳; 而随着红光光强的增加,以上参数呈下降趋势。随着红光和蓝光光强的增加,非光化学猝灭系数(NPQ)、相对电子传递速率(ETR)以及调节性能量耗散的量子产量Y(NPQ) 均呈上升趋势,但与在红光下相比,蓝光下叶片NPQY(NPQ)的值较低,而ETR值较高。非调节性能量耗散产量Y(NO)随着红光光强增加而呈上升趋势,而随着蓝光光强增加呈下降趋势。综上可见,随着光强的增加菜豆叶片的光化学效率呈降低趋势,但叶片在蓝光下的光化学吸收和利用效率高于红光。研究结果可为植物对光强和光质的响应提供一定的参考。
Abstract:
Common bean is widely planted all over the world with a wide variety of ecological conditions. The photosynthesis of bean leaves varies remarkably under different ecological conditions which may be correlated to differing light quality and the light intensity. In order to study the effects of different intensities and qualities of the light on the photosynthesis of plant,bean(Phaseolus vulgaris)leaves were used as the material,and Pulse-Amplitude-Modulation chlorophyll fluorometer was used to record the changes of the chlorophyll fluorescence parameters with different light intensities of red or blue,primary leaves were offered to the treatments in the present work. The results showed that the maximum photochemical efficiency of light adaptation(Fv’/Fm,the efficiency of capture excitation energy in PSⅡ reaction center )decreased with the increase of light intensities of red or blue light,but the values of Fv’/Fmunder blue light were significantly(P<0.05)or very significantly(P<0.01)higher than those under the same intensities of red light. With the increase of light intensities of blue light,the actual photochemical efficiency of PS Ⅱ(Y(Ⅱ),the actual photochemical efficiency of PS Ⅱ under light)and the coefficient of photochemical fluorescence quenching(qP and qL,the proportion of reduction state of PS Ⅱ original electron acceptor-plastoquinone(QA)increased but became stable gradually,while the values of Y(Ⅱ),qP and qL decreased with the increase of red light intensities. These meant that the photosynthetic efficiency of bean leaves decreased with the increase of blue or red light intensities. Non-photochemical quenching coefficient(NPQ,the excess energy dissipation by PS Ⅱ antenna system),electronic transmission rate(ETR,ETR increases linearly with light intensity,until it reaches a maximum. This happens when the capacity of all electron sink is reached),and quantum yield of regulated energy dissipation[Y(NPQ),an important indicator of self protection and the ability of PS Ⅱ to deal with excess light energy] increased with the increase of blue light or red light intensity. Compared to under red light,the values of ETR under blue light were higher but the values of NPQ and Y(NPQ) were lower. Quantum yield of non-regulated energy dissipation[Y(NO),the proportion of excess light energy in the form of heat and fluorescence,one of the important indicators of light damage] increased with the increase of red light intensity but decreased with the increase of blue light intensity. These results showed that the photosynthetic efficiency of bean leaves decreased with the increase of light intensities,but the absorbing and utilizing efficiencies of blue light were higher than those of red lights. We believe that this work would be helpful in developing current understanding on the responses of plants to different light intensities and qualities.

参考文献/References

Baker NR. 2008. Chlorophyll fluorescence:a probe of photosynthesis in vivo[J]. Ann Rev Plant Biol,59:89-113
Cai ZQ(蔡志全),Cao KF(曹坤芳),Feng YL(冯玉龙),et al 2003. Acclimation of foliar photosynthetic apparatus of three tropical woody species to growth irradiance(热带雨林三种树苗叶片光合机构对光强的适应)[J]. J Appl Ecol(应用生态学报),14(4):493-496
Cao TT(曹婷婷),Luo SR(罗时荣),Zhao XY(赵晓艳),et al. 2007. Measurement and analysis of direct sunlight and skylight spectra(太阳直射光谱和天空光谱的测量与分析)[J]. Chin J Physics(物理学报),56(9):5 554-5 557
Chen ML(陈明丽),Wang LF(王兰芬),Zhao XY(赵晓彦),et al. 2011. Current research progress(Phaseolus vulgaris L. )on anthracnose resistant genetics and genomics of common bean(普通菜豆基因组学及抗炭疽病遗传研究进展)[J]. J Plant Genet Res(植物遗传资源学报),12(6):941-947
Demmig-Adams B,Adams IIIWW,Barker DH,et al. 1996. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J]. Physiol Plant,98(2):253-264
Demmig-Adams B,Adams IIIWW. 1996. Xanthophyll cycle and light stress in nature:uniform response to excess direct sunlight among higher plant species[J]. Planta,198(3):460-470
Du HT(杜洪涛),Liu SQ(刘世琦)Pu GB(蒲高斌),et al. 2005. Effects of light qualities on growth and chlorophyll fluorescence parameters in leaves of color pepper seedling(光质对彩色甜椒幼苗生长及叶绿素荧光特性的影响)[J]. Acta Agric Boreal-Occident Sin(西北农业学报)14(1):41-45
El Bissati K,Kirilovsky D. 2001. Regulation of psbA and psaE expression by light quality in Synechocystis species PCC 6803. A redox control mechanism[J]. Plant Physiol,125(4):1 988-2 000
Ernstsen J,Woodrow IE,Mott KA. 1999. Effects of growth-light quantity,growth-light quality and CO2 concentration on Rubisco deactivation during low PFD or darkness[J]. Photosynth Res,61(1):65-75
Genty B,Briantais JM,Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochim Biophys Acta(BBA)-Gen Subj,990(1):87-92
Hu Y(胡阳),Jiang S(江莎),Li J(李洁),et al. 2009. Effects of the light intensity and quality on plant growth and development(光强和光质对植物生长发育的影响)[J]. J Inner Mongolia Agric Univ:Nat Sci Ed(内蒙古农业大学学报·自然科学版),(4):296-303
Liang F(梁芳),Zheng CS(郑成淑),Sun XZ(孙宪芝),et al. 2010. Effects of low temperature-and weak light stress and its recovery on the photosynthesis and chlorophyll fluorescence parameters of cut flower chrysanthemum(低温弱光胁迫及恢复对切花菊光合作用和叶绿素荧光参数的影响)[J]. J Appl Ecol(应用生态学报),21(1):29-35
Liu LX(刘立侠),Xu SM(许守民). 1993. Effects of different light qualities on structure of chloroplasts and photosynthetic physiological properties in panax ginseng(光质对人参叶绿体结构和光合生理性状的影响)[J]. Acta Bot Sin(植物学报),25(8):588-592
Neerakkal IM,Vinoth T,Meenakurmai T,et al. 2001. Leaf anatomy of five medicinal species grown under two light regimes[J]. Phytomorphology,51:185-189
Pan GH(潘光华),Gao S(高山),Wang GC(王广策),et al. 2011,Effects of temperature and light on photosynthesis of Ulva pertusa(温度和光照对孔石莼光合作用的影响)[J]. Mar Sci(海洋科学),35(9):14-17
Patil GG,Oi R,Gissinger A,et al. 2001. Plant morphology is affected by light quality selective plastic films and alternating day and night temperature[J]. Gartenbauwissenschaft,66(2):53-60
Peterson RB,Havir EA. et al. 2004. The multiphasic nature of nonphotochemical quenching:implications for assessment of photosynthetic electron transport based on chlorophyll fluorescence[J]. Photosynth Res,82(1):95-107
Pu GB(蒲高斌),Liu SQ(刘世琦),Liu L(刘磊),et al. 2005. Effects of different light qualities on growth and physiological characteristics of tomato seedlings(不同光质对番茄幼苗生长和生理特性的影响)[J]. Acta Hortic Sin(园艺学报),32(3):420-425
Saebo A,Krekling T,Appelgren M. et al. 1995. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro[J]. Plant Cell Tiss & Organ Cult,41:177-185
Tsinoremas NF,Schaefer MR,Golden SS. 1994. Blue and red light reversibly control psbA expression in the cyanobacterium Synechococcus sp. strain PCC 7942[J]. J Biol Chem,269(23):16 143-16 147
Voskresenskaya NP,Drozdova IS,Krendeleva TE. et al. 1977. Effect of light quality on the organization of photosynthetic electron transport chain of pea seedlings[J]. Plant Physiol, 59(2):151-154
Voskresenskaya NP,Nechaeva EP,Vlasova MP,et al. 1968. Significance of blue light and kinetin for restoration of the photosynthetic apparatus of aging barley leaves[J]. Sov Plant Physiol,15:890
Wu XX(吴雪霞),Yang XC(杨晓春),Zhu ZW(朱宗文),et al. 2013. Effects of exogenous 6-BA on photosynthesis,chlorophyll fluorescence characteristics and the allocation of absorbed light in eggplant seedlings under low temperature stress(外源6-BA对低温胁迫下茄子幼苗光合作用、叶绿素荧光参数及光能分配的影响)[J]. Plant Physiol J(植物生理学报),49(11):1 181-1 188
Xu JZ(徐景智),Li TK(李同锴),Liao XR(廖祥儒),et al. 2002. Study advances on selective absorption to light wavelengths in the development of plants(温室大棚作物生长发育对光色选择性吸收的研究进展)[J]. J Hebei Univ:Nat Sci Ed(河北大学学报·自然科学版),22(2):202-207
Xu K(徐凯),Guo YP(郭延平),Zhang SL(张上隆),et al. 2004. Effect of light quality on photosynthesis and chlorophyll fluorescence in strawberry leaves(不同光质对草莓叶片光合作用和叶绿素荧光的影响)[J]. Sci Agric Sin(中国农业科学),38(2):369-375
Yang XQ(杨晓青),Zhang SQ(张岁岐),Liang ZS(梁宗锁),et al. 2003. Effects of water stress on chlorophyll fluorescence parameters of different drought resistance winter wheat cultivars seedlings(水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响)[J]. Acta Bot Boreal-Occident Sin(西北植物学报),24(5):812-816
Zhang CH(张赤红),Wang SM(王述民). 2005. The genetic diversity assessment of common bean germplasm resources by using SSR markers(应用SSR标记对普通菜豆种质资源遗传多样性的评价)[J]. Acta Agron Sin(作物学报),31(5):619-627

备注/Memo

备注/Memo:
收稿日期: 2014-04-23修回日期: 2014-07-18
基金项目: 国家自然科学基金(31260059, 30900105); 国家教育部科学技术研究重点项目(211190); 甘肃省财政厅高校基本科研业务费项目。
作者简介: 冯汉青( 1978-),男,河北保定人,博士,副教授,硕士生导师,研究方向为植物生化与分子生物学,(E-mail)fenghanq@nwnu.edu.cn)。 *
更新日期/Last Update: 2015-05-20