我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

双向标记培养植物测定大气二氧化碳稳定碳同位素组成(PDF)

《广西植物》[ISSN:1000-3142/CN:45-1134/Q]

期数:
2015年02期
页码:
269-272
栏目:
生态与生物地理
出版日期:
2015-04-20

文章信息/Info

Title:
Determination of the stable carbon isotope composition in atmospheric carbon dioxide based on plants cultured in bidirectional tracers
文章编号:
1000-3142(2015)02-0269-04
作者:
杭红涛12 吴沿友1* 谢腾祥12
1. 中国科学院地球化学研究所 环境地球化学国家重点实验室, 贵阳 550002; 2. 中国科学院大学, 北京 100049
Author(s):
HANG Hong-Tao12 WU Yan-You1* XIE Teng-Xiang12
1. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
植物 碳酸酐酶 大气二氧化碳 全球气候变化 稳定碳同位素组成
Keywords:
plants carbonic anhydrase atmospheric carbon dioxide global climate change stable carbon isotope composition
分类号:
Q945
DOI:
10.11931/guihaia.gxzw201407031
文献标识码:
A
摘要:
基于植物能够利用体内的碳酸酐酶来催化碳酸氢根离子生成二氧化碳和水作为底物进行光合作用的特性,采用两种δ13CPDB值差值大于10‰的碳酸氢钠分别作为外源碳酸氢根离子的碳同位素标记物,通过室内双向水培诸葛菜和芥菜型油菜实验,分别向水培处理液里添加已知δ13CPDB值的碳酸氢钠并培养24 h,利用同位素比值质谱(IRMS)技术,测定并计算了两个时间、两种环境下的大气二氧化碳稳定碳同位素日平均组成。结果表明:在环境1(不同浓度的NaHCO3处理液)下所得到的δCa值与添加到处理液中的碳酸氢根离子的浓度有关; 在环境2(不同浓度的PEG处理液)下所得到的δCa值与添加到处理液中的PEG的浓度无关; 两种环境下所测得的大气二氧化碳稳定碳同位素日平均组成δCa值与实验中培养的植物种类无关,而与添加到培养液中碳酸氢根离子的浓度及植物的生长速率有关。数据重现性好,结果准确可靠,可以高精度的测定不同待测环境下大气二氧化碳稳定碳同位素比值,其可为以后监测不同时间、不同地点的大气二氧化碳碳同位素组成及来源提供非常有效的方法和信息。
Abstract:
Based on the characteristics that plants can take advantage of carbonic anhydrase enzyme to catalyze the bicarbonate ions into carbon dioxide and water,which can serve as substrates for photosynthesis,two sodium bicarbonate whose δ13CPDB value differences were greater than 10‰ were used as the carbon isotope labeling and to bidirectional water culture Orychophragmus violaceus and Brassica juncea lasted for 24 h in this study,respectively. The daily mean stable carbon isotope compositions in two different times and environments were investigated and analyzed according to isotope ratio mass spectrometry(IRMS)technique. In particular,Environment 1 represented adding some sodium bicarbonate to solutions to get different concentrations of bicarbonate solution and Environment 2 represented adding some polyethylene glycol to solutions to get different concentrations of PEG solutions. These results showed that δCa values in the Environment 1 were related to the concentrations of added exogenous sodium bicarbonate to solution,but these in the Environment 2 had no significant correlation with PEG concentration in the treatment solution,these results in this study suggested that the daily mean stable carbon isotope composition of atmospheric carbon dioxide had no relationship with the cultured plant species,but was related to the concentration of exogenous bicarbonate ion added to the culture solution and growth rate of the two plants. The data obtained with good reproducibility and reliability,accurately determined the stable carbon isotope composition of atmospheric carbon dioxide in test environments. This study confirmed that the method was a very powerful tool for monitoring the carbon isotope composition and sources of atmospheric carbon dioxide in different times and places for further.

参考文献/References

Chen SP(陈世苹),Bai YF(白永飞),Han XG(韩兴国). 2002. Applications of stable carbon isotope techniques to ecological research(稳定性碳同位素技术在生态学研究中的应用)[J]. Chin J Plant Ecol (植物生态学报),26(5): 549-560
Deuser WE,Degens ET. 1967. Carbon isotope fractionation in the system CO2(gas)-CO2(aqueous)-HCO3-(aqueous)[J]. Nature,215(5 105): 1 033-1 035
Huang Y(黄耀). 2006. Emissions of greenhouse gases in china and its reduction strategy(中国的温室气体排放,减排措施与对策)[J]. Quatern Sci(第四纪研究),26(5): 722-732
Hoagland DR,Arnon DI. 1950. The water-culture method for growing plants without soil[J]. Calif Agric Exp Stn Circ,347: 1-32
Karim A,Dubois K,Veizer J. 2011. Carbon and oxygen dynamics in the Laurentian Great Lakes: Implications for the CO2 flux from terrestrial aquatic systems to the atmosphere[J]. Chem Geol,281(1-2): 133-141
Li KR(李克让). 2002. Land use change,Net Emissions of Greenhouse gases and the carbon cycling in terrestrial ecosystems(土地利用变化和温室气体净排放与陆地生态系统碳循环)[M]. Beijing(北京): China Meterological Press(气象出版社): 25-45
Li ZH(李正华),Liu RM(刘荣谟),An ZS(安芷生). 1994. Evidence from tree-rign δ13C for the increasing of atmospheric concentration of CO2(工业革命以来大气CO2 浓度不断增加的树轮稳定碳同位素证据)[J]. Chin Sci Bull(科学通报),39(23): 2 172-2 174
Marion H. O’Leary. 1981. Carbon isotope fractionation in plants[J]. Phytochem,20(4): 553-567
Mook WJ,Bommerson JC,Staverman WH. 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide[J]. Earth Planet Sci Lett,22(2): 169-176
Rodhe H. 1990. A comparison of the contribution of various gases to the greenhouse effect[J]. Science,248(4 960): 1 217-1 219
Wang MX(王明星),Zhang RJ(张仁健),Zheng XH(郑循华). 2000. Sources and sinks of green house gases(温室气体的源与汇)[J]. Clim Environ Res(气候与环境研究),5(1): 75-79
Wu YY(吴沿友),Xing DK(邢德科),Liu Y(刘莹). 2011. The Characteristics of Bicarbonate Used by Plant(植物利用碳酸氢根离子的特征分析)[J]. Earth Environ(地球与环境),39(2): 273-277
Wu YY,Xing DK. 2012. Effect of bicarbonate treatment on photosynthetic assimilation of inorganic carbon in two plant species of Moraceae[J]. Photosynthetica,50(4): 587-594
Xing DK,Wu YY. 2012. Photosynthetic response of three climber plant species to osmotic stress induced by polyethylene glycol(PEG)6000[J]. Acta Physiol Plant,34(5): 1 659-1 668

备注/Memo

备注/Memo:
收稿日期: 2014-08-20修回日期: 2014-10-29
基金项目: 国家自然科学基金(31070365); 国家重点基础研究发展计划项目(2013CB956701,2013CB956703); 中国科学院碳汇专项(XDA05070400)。
作者简介: 杭红涛(1986-),男,博士研究生,从事环境地球化学研究,(E-mail)hanghongtao86@126.com。 *通讯作者: 吴沿友,研究员,环境地球化学专业,(E-mail)wuyanyou@mail.gyig.ac.cn。
更新日期/Last Update: 2015-04-20