我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

鼎湖山季风常绿阔叶林两种优势树种的生境适应研究:叶片功能性状和水力结构特征(PDF)

《广西植物》[ISSN:1000-3142/CN:45-1134/Q]

期数:
2015年02期
页码:
261-268
栏目:
生态与生物地理
出版日期:
2015-04-20

文章信息/Info

Title:
Habitat adaptation of two dominant tree species in a subtropical monsoon forest: leaf functional traits and hydraulic properties
文章编号:
1000-3142(2015)02-0261-08
作者:
马 金12 吴林芳1 韦 霄3 叶万辉1 曹洪麟1 沈 浩1*
1. 中国科学院退化生态系统植被恢复与管理重点实验室, 中国科学院华南植物园, 广州 510650; 2. 中国 科学院大学, 北京100049; 3. 广西壮族自治区 中国科学院 广西植物研究所, 广西 桂林 541006
Author(s):
MA Jin12 WU Lin-Fang1 WEI Xiao3 YE Wan-Hui1 CAO Hong-Lin1 SHEN Hao1*
1. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, China
关键词:
罗伞树 光叶山黄皮 功能性状 水力结构 生境适应
Keywords:
Ardisia quinquegona Aidia canthioides functional traits plant hydraulics habitat adaptation
分类号:
Q948.15; Q945.79
DOI:
10.11931/guihaia.gxzw201403019
文献标识码:
A
摘要:
植物在长期的进化和发展过程中,通过与环境相互作用形成了适应环境的形态结构及生理特征,反映了植物适应环境的生态策略; 在森林群落中,地形和土壤等的变异常导致生境的异质性,从而直接或者间接影响物种的分布格局。因此,在生境异质性较强的森林群落中,植物物种分布格局与其生态适应策略有何关系,是值得关注的问题。该文以鼎湖山南亚热带季风常绿阔叶林20 hm2监测样地为平台,针对两种常绿优势树种罗伞树(Ardisia quinquegona)和光叶山黄皮(Aidia canthioides),对比研究了两种植物的叶片功能性状和水力结构特征在山脊、山坡、山谷三种不同生境中的生态适应策略,以阐明物种分布格局与其生态适应策略的关系。结果表明:罗伞树主要是通过调整叶面积(LA)、木材密度(WD)及渗透调节来适应不同生境; 光叶山黄皮主要通过调整比叶面积(SLA)、WD及渗透调节,采取养分有效保存(低SLA,高干物质含量)及慢生长高存活的策略以适应不同生境,适应环境能力更强,尤其是在山脊和山坡生境; 而且影响两个树种叶片功能性状和水力结构的主导土壤因子有所不同。研究结果说明罗伞树和光叶山黄皮对山脊和山坡生境比山谷更为适应,但在叶片功能性状和水力结构特征方面的生境适应策略不同。
Abstract:
During the long-term processes of evolution and development,plant species yield a set of morphological,structural and physiological characteristics through their interactions with the environment,and these characteristics indicate their ecological adaptive strategies to the environment. Within forest communities,topographic and edaphic variations often lead to habitat heterogeneity,and hence tend to directly or undirectly influence the distribution patterns of plant species. Thus,it is an important question that how plant species distribution is related to its ecological adaptive strategies in forest commnuties with high habitat heterogeneity. Ardisia quinquegona and Aidia canthioides are two dominant evergreen tree species in the subtropical monsoon evergreen broad-leaved forest within the 20 ha forest biodiversity monitoring plot at Dinghushan National Nature Reserve in Zhaoqing City,Guangdong Province,China. The two tree species are distributed in different habitats including mountain ridge,slope,and valley. To understand the relation of their ecological strategies of habitat adaptation to their distribution patterns in the forest,a comparative study was conducted on their leaf functional traits and hydraulic properties among the three different habitats. Functional traits measured include leaf area(LA),leaf thickness,leaf length/leaf width ratio,specific leaf area(SLA),and leaf dry matter content(LDMC),while hydraulic properties include sapwood specific hydraulic conductivity,leaf specific conductivity,huber value,wood density(WD),leaf water potential at turgor loss point(π0)and saturated leaf water potential( π100). The results showed that A. quinquegona tended to adapt to different habitats mainly through the adjustment of leaf area LA,WD and osmotic regulation. In contrast to A. quinquegona,A. canthioides had a stronger ability to adapt to the environment,especially mountain ridge and slope habitats,via the strategy of “slow growth rate and high survival rate”. It mainly made fine adjustment on SLA,WD and osmotic regulation,and used the strategy of efficient conservation of nutrients(low SLA,high LDMC). Moreover,the soil factors that limit leaf functional traits and plant hydraulics differed between the two studied tree species. Our results revealed that both species were suitable to survive in mount ridge and slope rather than in valley,while they differed in habitat adaptation strategies regarding leaf functional traits and hydraulic properties,although they both were dominant species in the subtropical monsoon evergreen broad-leaved forest.

参考文献/References

Ackerly D. 2004. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance[J]. Ecol Monogr,74(1):25-44
Bellingham PJ,Tanner EVJ. 2000. The influence of topography on tree growth,mortality,and recruitment in a tropical montane forest[J]. Biotropica,32(3):378-384
Blackman CJ,Brodribb TJ,Jordan GJ. 2010. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms[J]. New Phytol,188(4):1 113-1 123
Brodribb T,Holbrook N,Edwards E,et al. 2003. Relations between stomatal closure,leaf turgor and xylem vulnerability in eight tropical dry forest trees[J]. Plant Cell Neviron,26(3):443-450
Cornelissen JHC,Lavorel S,Garnier E,et al. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Aust J Bot,51(4):335-380
Cruiziat P,Cochard H,Ameglio T. 2002. Hydraulic architecture of trees: main concepts and results[J]. Ann For Sci,59(7):723-752
Cunningham SA,Summerhayes B,Westoby M. 1999. Evolutionary divergences in leaf structure and chemistry,comparing rainfall and soil nutrient gradients[J]. Ecol Monogr,69(4):569-588
Editorial Committee of Flora of China,Chinese Academy of Sciences(中国科学院中国植物志编辑委员会). 1999. Flora of China(中国植物志)[M]. Vol.32. Beijing(北京):Science Press(科学出版社) Gao J(高洁),Cao KF(曹坤芳),Wang HX(王焕校). 2004. Water relations and stomatal conductance in nine tree species during a dry period grown in a hot and dry valley(干热河谷9种造林树种在旱季的水分关系和气孔导度)[J]. Acta Phytoecol Sin (植物生态学报),28(2):186-190
Hao GY,Sack L,Wang AY,et al. 2010. Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species[J]. Funct Ecol,24(4):731-740
Harms KE,Condit R,Hubbell SP,et al. 2001. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot[J]. J Ecol,89(6):947-959
Hu MY(胡梦瑶),Zhang L(张林),Luo TX(罗天祥),et al. 2012. Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang,China(西藏紫花针茅叶功能性状沿降水梯度的变化)[J]. Chin J Plant Ecol(植物生态学报),36(2):136-143
Huang ZL(黄忠良),Kong GH(孔国辉),and Wei P(魏平). 1998. Plant species diversity dynamics in Dinghu Mountain forests(鼎湖山植物物种多样性动态)[J]. Biodiv Sci(生物多样性),(2):37-42
John R,Dalling JW,Harms KE,et al. 2007. Soil nutrients influence spatial distributions of tropical tree species[J]. Proc Natl Acad Sci USA,104(3):864-869
Lambrecht SC,Santiago LS,DeVan CM,et al. 2011. Plant water status and hydraulic conductance during flowering in the southern california coastal sage shrub Salvia Mellifera(Lamiaceae)[J]. Am J Bot,98(8):1 286-1 292
Lenz TI,Wright IJ,Westoby M. 2006. Interrelations among pressure-volume curve traits across species and water availability gradients[J]. Physiol Plantarum,127(3):423-433
Li L,Huang ZL,Ye WH,et al. 2009. Spatial distributions of tree species in a subtropical forest of China[J]. Oikos,118(4):495-502
Li JY(李吉跃),and Zhai HB(翟洪波). 2000. Hydraulic architecture and drought resistance of woody plants(木本植物水力结构与抗旱性)[J]. Chin J Appl Ecol(应用生态学报),11(2):301-305
Meziane D,Shipley B. 2001. Direct and indirect relationships between specific leaf area,leaf nitrogen and leaf gas exchange. Effects of irradiance and nutrient supply[J]. Ann Bot,88(5):915-927
Perez-Harguindeguy N,Diaz S,Garnier E,et al. 2013. New handbook for standardised measurement of plant functional traits worldwide[J]. Aust J Bot,61(3): 167-234
Pockman WT,Sperry JS. 2000. Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation[J]. Am J Bot,87(9):1 287-1 299
Rao TT(尧婷婷),Meng TT(孟婷婷),Ni J(倪健),et al. 2010. Leaf functional trait variation and its relationship with plant phylogenic background and the climate in Xinjiang Junggar Basin,NW China(新疆准噶尔荒漠植物叶片功能性状的进化和环境驱动机制初探)[J]. Biodiv Sci(生物多样性),18(2):188-197
Santiago LS,Goldstein G,Meinzer FC,et al. 2004. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees[J]. Oecologia,140(4):543-550
Schulte PJ,Hinckley TM. 1985. A comparison of pressure-volume curve data analysis techniques[J]. J Exp Bot,36(10):1 590-1 602
Shen Y,Santiago LS,Ma L,et al. 2013. Forest dynamics of a subtropical monsoon forest in Dinghushan,China: recruitment,mortality and the pace of community change[J]. J Trop Ecol,29(2):131-145
Tyree MT,Ewers FW. 1991. The hydraulic architecture of trees and other woody plants[J]. New Phytol,119(3):345-360
Wang ZG,Ye WH,Cao HL,et al. 2009. Species-topography association in a species-rich subtropical forest of China[J]. Basic Appl Ecol,10(7):648-655
Westoby M,Falster DS,Moles AT,et al. 2002. Plant ecological strategies: Some leading dimensions of variation between species[J]. Annu Rev Ecol Syst,33:125-159
Wright IJ,Reich P,Westoby M. 2001. Strategy shifts in leaf physiology,structure and nutrient content between species of high-and low-rainfall and high-and low-nutrient habitats[J]. Funct Ecol,15(4):423-434
Ye WH(叶万辉),Cao HL(曹洪麟),Huang ZL(黄忠良),et al. 2008. Connunity structure of a 20 hm2 lower subtropical evergreen broadleaved forest plot in dinghushan,China(鼎湖山南亚热带常绿阔叶林 20 公顷样地群落特征研究)[J]. Chin J Plant Ecol(植物生态学报),32(2):274-286
Zhu SD,Song JJ,Ye Q,et al. 2013. Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests[J]. Plant Cell Environ,36(4):879-891

备注/Memo

备注/Memo:
收稿日期: 2014-06-28修回日期: 2014-08-23
基金项目: 国家自然科学基金(31370446)
作者简介: 马金(1987-),女,吉林通化人,硕士,主要从事植物生理生态学研究,(E-mail)mackin12@126.com。 *通讯作者: 沈浩,博士,副研究员,主要从事保护生态学和植物生理生态学研究,(E-mail)shenhao@scbg.ac.cn。
更新日期/Last Update: 2015-04-20