我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

茶树HMG-CoA还原酶基因全长cDNA克隆及序列分析(PDF)

《广西植物》[ISSN:1000-3142/CN:45-1134/Q]

期数:
2015年02期
页码:
242-249
栏目:
遗传与育种
出版日期:
2015-04-20

文章信息/Info

Title:
Cloning and sequence analysis of HMG-CoA reductase full-length cDNA from tea(Camellia sinensis)
文章编号:
1000-3142(2015)02-0231-08
作者:
韩兴杰1 徐玲玲1* 廖 亮1 李同建1 邓辉胜1 樊启水2 徐小青3
1. 九江学院 生命科学学院, 江西 九江 332000; 2. 江西修水茶叶科学研究所, 江西 修水 332400; 3. 九江市湖口县三里林场, 江西 湖口 332500
Author(s):
HAN Xing-Jie1 XU Ling-Ling1* LIAO Liang1 LI Tong-Jian1 DENG Hui-Sheng1 FAN Qi-Shui2 XU Xiao-Qing3
1. College of Life Sciences, Jiujiang University, Jiujiang 332000, China; 2. Xiushui Tea Research Institute of Jiangxi, Xiushui 332400, China; 3. Sanli Forest Farm of Hukou County, Hukou 332500, China
关键词:
茶树 HMG-CoA还原酶 HMGR 基因克隆 序列分析
Keywords:
Camellia sinensis HMG-CoA reductase HMGR gene cloning sequence analysis
分类号:
S571.1; Q943.2
DOI:
10.11931/guihaia.gxzw201311029
文献标识码:
A
摘要:
香气是茶叶的重要品质之一,萜类物质不仅香气好,而且沸点普遍较高,是构成茶叶香气的重要物质基础,决定着茶叶的香气品质,也可作为茶叶香型划分的依据。在植物中,倍半萜、多萜醇等通过胞质中的甲瓦龙酸(MVA)途径合成。HMG-CoA还原酶(HMGR)催化HMG-CoA(3-羟基-3-甲基戊二酸单酰辅酶A)生成甲瓦龙酸,是依赖MVA萜类合成途径的关键限速反应。为了有助于理解茶树萜类合成的分子遗传机制,通过RACE-PCR方法从茶树中克隆了一个编码HMG-CoA还原酶的cDNA全长序列(命名为CsHMGR1),该序列由1 979 bp组成,包含一个1 722 bp的完整开放阅读框,编码573个氨基酸。其推定的编码蛋白与橡胶树、旱莲木、人参、荔枝、西洋参、丹参、罗汉果及龙眼的同源蛋白具有80%~82%的序列一致性。利用CsHMGR1和其它物种HMGR同源蛋白的催化区域构建系统发育树,表明其属于真核生物I类HMGR家族。结构分析表明,CsHMGR1含有两个跨膜区,推测其与其它真核生物同源蛋白类似地定位于内质网上; 含有两个HMG-CoA结合位点、两个NADPH结合位点、四个保守的催化活性残基及一个磷酸化位点,说明磷酸化/去磷酸化很可能也是其活性调节的重要方式。表达分析表明,CsHMGR1在“大叶龙”叶芽、母株叶芽及花芽都有较强的表达。其表达调控及生理活性对茶叶品质可能有重要影响,并在其功能解析的基础上,有可能作为茶叶品质鉴定及育种的一个依据
Abstract:
Aroma is an important character of tea,and terpenoids,with preferable fragrance and relatively high boiling point,are substantial substances contributing to tea aroma,which not only determine the aroma quality of tea,but also provide a classification basis of scent types. In plants,sesquiterpenes and dolichol and so forth are synthesize via the cytoplasmic mevalonate-dependent pathway. The enzyme HMG-CoA reductase(HMGR)catalyzes the conversion of 3-hydroxy-3-methylglutaryl coenzyme A(HMG-CoA)to mevalonate,which is the committed step in the synthesis of isoprenoids via the MVA pathway. To help understand the molecular and genetic mechanisms underlying terpenoid synthesis of tea,a full-length cDNA encoding HMGR was cloned from tea(Camellia sinensis(L.)O. Kuntze)by using the RACE-PCR technique(designated as CsHMGR1). It comprised 1 979 bp,with a 1 722 bp intact open reading frame encoding a 573-amino-acid protein. The deduced protein showed 80% to 82% similarities to homologs from rubber tree(Hevea brasiliensis),common camptotheca fruit(Camptotheca acuminate),ginseng(Panax ginseng),litchis(Litchi chinensis),American ginseng(Panax quinquefolius),rooted salvia(Salvia miltiorrhiza),Momordica grosvenori(Siraitia grosvenorii),and longan(Dimocarpus longan). The phylogenetic tree,constructed with the catalytic domained of CsHMGR1 and homologs from other species,indicated that CsHMGR1 belonged to the eukaryotic class I HMGR family. CsHMGR1 consisted of two transmembrane domains,implying that it may be localized to endoplasmic reticulum(ER)similarly to other eukaryotic homologs. It also contained two HMG-CoA binding sites,two NADP(H)-binding sites,four conserved catalytic active residues and a phosphorylation site,indicating that phosphorylation/dephosphorylation is likely a crucial mode of regulation of its biochemical activity. Tissue expression analysis indicated that CsHMGR1 was expressed comparatively in the leaf buds of C. sinensis cv. Dayelong and in both leaf buds and floral buds of the mother plants. The regulation of expression and physiological activity of CsHMGR1 are likely to impact greatly on tea quality,and CsHMGR1 may provide a basis of the quality evaluation and breeding of tea given that its function is further resolved.

参考文献/References

Bochar DA,Stauffacher CV,Rodwell VW. 1999. Sequence comparisons reveal two classes of 3-hydroxy-3-methylglutaryl coenzyme A reductase[J]. Mol Genet Metab,66:122-127
Dai Z,Cui GH,Zhou SF,
et al. 2011. Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Salvia miltiorrhiza involved in diterpenoid tanshinone accumulation[J]. J Plant Physiol,168(2):148-157
Friesen JA,Rodwell VW.
2004. The 3-hydroxy-3-methylglutaryl coenzyme-A(HMG-CoA)reductases[J]. Genome Biol,5(11):2 481-2 487
Goldstein JL,Brown MS.
1990. Regulation of the mevalonate pathway[J]. Nature,343(6 257): 425-430
Grochowski LL,Xu HM,White RH.
2006. Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate[J]. J Bacterial,188(9): 3 192-3 198
He ZR(
贺志荣),Xiang W(项威),Xu Y(徐燕),et al. 2012. Progress in the research of biosynthesis of volatile terpenoids and their glycosides in tea plant(茶树挥发性萜类物质及其糖苷化合物生物合成的研究进展)[J]. J Tea Sci(茶叶科学),32(1):1-8
Istvan ES,Deisenhofer J.
2000a. The structure of the catalytic portion of human HMG-CoA reductase[J]. Bioch Bioph Acta,1 529:9-18
Istvan ES,Palnitkar M,Buchanan SK,
et al. 2000b. Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis[J]. EMBO J,19(5):819-830
Istvan ES,Deisenhofer J.
2001. Structural mechanism for sta-tin inhibition of HMG-CoA reductase[J]. Science,292(5 519):1 160-1 164
Kelley LA,Sternberg MJE.
2009. Protein structure prediction on the web: a case study using the Phyre server[J]. Nat Protoc,4:363-371
Kuzuyama T,Hemmi H,Takahashi S.
2010. Mevalonate pathway in bacteria and archaea[J]. Compr Nat Prod II: Chem Biol,1:493-516
Ma L(
马靓),Ding P(丁鹏),Yang GX(杨广笑),et al. 2006. Advances on the plant terpenoid isoprenoid biosynthetic pathway and its key enzymes(植物类萜生物合成途径及关键酶的研究进展)[J]. Biotechnol Bull(生物技术通报),Supp(增刊):22-29
Rodr�/i>237;guez-Concepci�/i>243;n M,Boronat A. 2002. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics[J]. Plant Physiol,130:1 079-1 089
Rohmer M.
2007. Diversity in isoprene unit biosynthesis: the methylerythritol phosphate pathway in bacteria and plastids[J]. Pure Appl Chem,79(4):739-751
Roitelman J,Olender EH,Bar-Nun S,
et al. 1992. Immunological evidence for eight spans in the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for enzyme degradation in the endoplasmic reticulum[J]. J Cell Biol,117(5):959-973
Wass MN,Kelley LA,Sternberg MJ.
2010. 3DLigandSite: predicting ligand-binding sites using similar structures[J]. Nucleic Acids Res,38:W469-473
Xu LL(
徐玲玲),Zhang MY(张美云),Li TJ(李同建),et al. 2009. Study on anatomy,actin gene and molecular marker of tea cultivar Dayelong(大叶龙茶解剖学肌动蛋白基因及分子标记的研究)[J]. J Tea Sci(茶叶科学),29(4):263-270
Zhang CB(
张长波),Sun HX(孙红霞),Gong ZJ(巩中军),et al. 2007. Plant terpenoid natural metabolism pathways and their synthases(植物萜类化合物的天然合成途径及其相关合酶)[J]. Plant Physiol J(植物生理学通讯),43(4):779-786
Yu XY(
于欣洋),Yue WJ(岳文杰),Li JH(李金辉),et al. 2008. Research progress on aromatic components of tea(茶叶香气研究进展)[J]. Tea Sci & Technol(茶叶科学技术),3:9-12
Zhang ZZ(
张正竹),Shi ZP(施兆鹏),Wan XC(宛晓春). 2000. Terpenoid substances and tea aroma(萜类物质与茶叶香气)[J]. J Anhui Agric Univ(安徽农业大学学报),27(1):51-54
Zhou CH(
周春华),Sheng YY(盛艳乐),Zhao DQ(赵大球),et al. 2009. Advances in the biosynthesis research of ginkgo terpene lactones(银杏萜内酯的生物合成研究进展)[J]. J Chin Med Mater(中药材),32(6):994-999

备注/Memo

备注/Memo:
收稿日期: 2014-05-27修回日期: 2014-07-25
基金项目: 江西省教育厅科学技术研究项目(GJJ10620)
作者简介: 韩兴杰(1977-),男,黑龙江齐齐哈尔市人,博士,主要从事植物分子生物学与基因工程研究,(E-mail)hanxjie@foxmail.com。 *通讯作者: 徐玲玲,教授,研究方向为植物分子生物学,(E-mail)lingl239@163.com。
更新日期/Last Update: 2015-04-20