|本期目录/Table of Contents|





Progress in the effects of microgravity on plant growth and development
许冬倩1 郭双生2*
1. 河北经贸大学, 石家庄 050061; 2. 中国航天员科研训练中心, 北京 100094
XU Dong-Qian1 GUO Shuang-Sheng2*
1. Hebei University of Economics and Business, Shijiazhuang 050061, China; 2. China Astronaut Research and Training Center, Beijing 1000094, China
植物 生物再生式生命保障系统 微重力 三维回旋仪
plant bioregenerative life supporting system microgravity three-dimensions random positioning machine
微重力是最独特的空间环境条件之一,研究微重力对不同植物种类以及不同植物部位的影响是空间生物学的重要内容之一,对于建立生物再生式生命保障系统意义重大。生物再生式生命保障系统是未来开展长期载人空间活动的核心技术,其优势在于能在一个密闭的系统内持续再生氧气,水和食物等高等动物生活必需品,植物部件是生物再生式生命保障系统的重要组成部分。了解和掌握微重力对植物生长发育的影响,有助于采取有效的作业制度确保其正常生长发育和繁殖,是成功建立生物再生式生命保障系统的首要关键。该文就植物在空间探索中的地位和作用,地面模拟微重力的装置以及国内外有关微重力对植物的影响做一综述。现有的研究结果包括,未来长期的载人航天任务需要植物通过光合作用为生物再生式生命保障系统提供部分动物营养、洁净水以及清除系统中的固体废物和二氧化碳; 三维随机回旋装置是目前地面上模拟微重力效应的主要装置之一,尤其适用于植物材料的长期模拟微重力处理; 国内外有关微重力对植物影响的报道生理生化水平多集中在植物的生长发育和生理反应,比如表型变化或者与重力相关的激素或者钙离子的再分配,细胞或亚细胞水平主要有细胞壁、线粒体、叶绿体以及细胞骨架等,基因和蛋白质表达水平的研究对象主要为拟南芥。由于实验方法和材料之间的差异,微重力对不同植物或者植物不同部位在各个水平的影响效果并不一致,未来需要开展更多的相关研究工作。
Microgravity is the unique and most important character in the space. Research of the effects of microgravity on different kinds of plants or different plant parts is important for space biology,which is significant for us to establish the bio-regenerative life supporting system. Bio-regenerative life supporting system was raised and established as one of the core technologies for future long-term manned space missions,it has the advantage that can continue the regeneration of oxygen,water and food for higher animals necessities in a closed system. Plant component is an important part of bio-regenerative life supporting system. Understanding and knowledge of the effects of space microgravity condition on plant growth and development will contribute to build the effective operation system to ensure their normal growth and reproduction,which is the primary key to successfully establish bio-regenerative life supporting system. The paper summarized the status and function of plants in space exploring,the simulated microgravity apparatus on ground and the research related to the real and simulated microgravity on different plant species and different plant parts at home and abroad. Existing research results were as follows: future long-term space missions required loading plant photosynthesis to provide some animal nutrition and clean water and removed some solid waste and carbon dioxide in the bio-regenerative life supporting system; three-dimension random positioning machine was the most effective tool to simulated microgravity on the ground,especially for long-term plant experiments; research reports about the effects of microgravity on plant in physiological and biochemical level at home and abroad mainly concentrated on plant growth and development and physiological response,such as phenotypic changes or redistribution hormone or calcium ions associated with gravity. Studies on cellular or subcellular level mainly focus on cell wall,mitochondria,chloroplasts,and the cytoskeleton. Arabidopsis is almost the only study object in the gene and protein expression level. Due to the divergence between the experimental methods and materials,the effects of microgravity on different plants or different parts are not consistent in each level. More research work is required in the future.


Aarrouf J,Darbelley N,Demandre C,et al. 1999. Effect of horizontal clinorotation on the root system development and on lipid breakdown in rapeseed(Brassica napus)seedlings[J]. Plant Cell Physiol,40(4):396-405
Aarrouf J,Demandre C,Darbelley N,et al. 2003. Development of the primary root and mobilisation of reserves in etiolated seedlings of Brassica napus grown on a slowly rotating clinostat[J]. J Plant Physiol,160(4):409-413
Aarrouf J,Schoevaert D,Maldiney R,et al. 1999. Changes in hormonal balance and meristematic activity in primary root tips on the slowly rotating clinostat and their effect on the development of the rapeseed root system[J]. Physiol Plant,105(4):708-718
Aldiss BW. 1974. Space Opera:An Anthology of Way-back-when Futures[M]. London:Weidenfeld & Nicolson Berkovich YA,Smolyanina S,Krivobok N,et al. 2009.
Vegetable production facility as a part of a closed life support system in a Russian Martian space flight scenario[J]. Adv Space Res,44(2):170-176 Brown CS. 2000. Programmable plants:development of an in plantasystem for the remote monitoring and control of plant function for life support[J]. Curr Opin Plant Biol,3 Colla G,Rouphael Y,Cardarelli M,et al. 2007. Growth,yield and reproduction of dwarf tomato grown under simulated microgravity conditions[J]. Plant Biosyst,141(1):75-81
Davies FT,Lacey R,He C. 2003. Growing plants for NASA-challenges in lunar and martian agriculture,53:59-64
De Micco V,Aronne G,De Pascale S. 2006. Effect of simulated microgravity on seedling development and vascular differentiation of soy[J]. Acta Astronaut,58(3):139-148
De Micco V,Scala M,Aronne G. 2006. Effects of simulated microgravity on male gametophyte of Prunus,Pyrus,and Brassica species[J]. Protoplasma,228(1-3):121-126
De Micco V,Scala M,Aronne G. 2006. Evaluation of the effect of clinostat rotation on pollen germination and tube development as a tool for selection of plants in space[J]. Acta Astronaut,58(9):464-470
Ferl R,Wheeler R,Levine HG, et al. 2002. Plants in space[J]. Curr Opin Plant Biol,5(3):258-263
Gilroy S,Masson PH. 2008. Plant tropisms:Wiley Online Library. Guisinger MM,Kiss JZ. 1999. The influence of microgravity and spaceflight on columella cell ultrastructure in starch-deficient mutants of Arabidopsis[J]. Am J Bot,86(10):1 357-1 366
Halstead TW,Dutcher FR. 1987. Plants in space[J]. Ann Rev Plant Physiol,38(1):317-345
Hendrickx L,De Wever H,Hermans V,et al. 2006. Microbial ecology of the closed artificial ecosystem MELiSSA(Micro-Ecological Life Support System Alternative):reinventing and compartmentalizing the Earth’s food and oxygen regeneration system for long-haul space exploration missions[J]. Res Microbiol,157(1):77-86
Hoshino T,Miyamoto K,Ueda J. 2004. Automorphosis and auxin polar transport of etiolated pea seedlings under microgravity conditions[J]. Biol Sci Space,18(3):94-95
Hoson T,1994. Automorphogenesis of maize roots under simulated microgravity conditions[J]. Plant Soil,165(2):309-314
Hoson T,Kamisaka S,Buchen B,et al. 1996. Possible use of a 3-D clinostat to analyze plant growth processes under microgravity conditions[J]. Adv Space Res,17(6-7):47-53
Hoson T,Kamisaka S,Yamamoto R,et al. 1995. Automorphosis of maize shoots under simulated microgravity on a 3-dimensional clinostat[J]. Physiol Plant,93(2):346-351
Hoson T,Kamisaka S,Yamashita M,et al. 1998. Automorphosis of higher plants on a 3-D clinostat[J]. Adv Space Res,21(8-9):1 229-1 238
Hoson T,Saiki M,Kamisaka S,et al. 2001. Automorphogenesis and gravitropism of plant seedlings grown under microgravity conditions[J]. Adv Space Res,27(5):933-940
Hoson T. Soga K. 2003. New aspects of gravity responses in plant cells[J]. Int Rev Cytol,229:209-244
Hoson T,Soga K,Wakabayashi K,et al. 2003. Growth and cell wall changes in rice roots during spaceflight[J]. Plant Soil,255(1):19-26
Kiss JZ,Kumar P,Millar KDL,et al. 2009. Operations of a spaceflight experiment to investigate plant tropisms[J]. Adv Space Res,44(8):879-886 Kordyum E. 1994. Effects of altered gravity on plant cell processes:results of recent space and clinostatic experiments[J]. Adv Space Res,14(8):77-85
Kordyum EL. 1997. Biology of plant cells in microgravity and under clinostating[J]. Int Rev Cytol,171:1-78
Kordyum EL. 2003. Calcium signaling in plant cells in altered gravity[J]. Adv Space Res,32(8):1 621-1 630
Laurinaviˇius R,Stoˇkus A,Buchen B,et al. 1996. Structure of cress root statocytes in microgravity(BION-10 mission)[J]. Adv Space Res,17(6):91-94
Lehto KM,Lehto HJ. Kanervo EA. 2006. Suitability of different photosynthetic organisms for an extraterrestrial biological life support system[J]. Res Microbiol,157(1):69-76
Levine LH,Heyenga AG,Levine HG,et al. 2001. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment[J]. Phytochemistry,57(6):835-846
Liu M,Wang YL,Xue H,et al. 1999. A study on the ultrastructure of plant cell under simulated microgravity[J]. Space Med Med Eng(Beijing),12(5):360-363 Martzivanou M,Babbick M,Cogoli-Greuter M,et al. 2006. Microgravity-related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures[J]. Protoplasma,229(2):155-162
Matía I,González-Camacho F,Herranz R,et al. 2010. Plant cell proliferation and growth are altered by microgravity conditions in spaceflight[J]. J Plant Physiol,167(3):184-193
Matía I,González-Camacho F,Marco R,et al. 2005. Nucleolar structure and proliferation activity of Arabidopsis root cells from seedlings germinated on the International Space Station[J]. Adv Space Res,36(7):1 244-1 253
Merkys A,Laurinavichius R,Rupainene O,et al. 1981. Gravity as an obligatory factor in normal higher plant growth and development[J]. Adv Space Res,1(14):109-116
Miyamoto K,Oka M,Yamamoto R,et al. 1999. Auxin polar transport in Arabidopsis under simulated microgravity conditions,Relevance to growth and development[J]. Adv Space Res,23(12):2 033-2 036
Monje O,Stutte G,Goins G,et al. 2003. Farming in space:environmental and biophysical concerns[J]. Adv Space Res,31(1):151-167
Nelson M,Dempster W,Allen J. 2008. Integration of lessons from recent research for“Earth to Mars”life support systems[J]. Adv Space Res,41(5):675-683
Paul A-L,Popp MP,Gurley WB,et al. 2005. Arabidopsis gene expression patterns are altered during spaceflight[J]. Adv Space Res,36(7):1 175-1 181
Perbal G. 2006. Plant development in microgravity[J]. Fund Space Biol:227-290
Ruyters G,Scott TK. 1997. Future research in plant biology in space:summary of critical issues and recommendations of the workshop[J]. Planta,203:S211-S213
Shimazu T,Miyamoto K. Ueda J. 2003. Growth and development,and auxin polar transport of transgenic Arabidopsis under simulated microgravity conditions on a three-dimensional clinostat[J]. Biol Sci Space,17(4):288-292
Sieberer BJ,Kieft H,Franssen-Verheijen T,et al. 2009. Cell proliferation,cell shape,and microtubule and cellulose microfibril organization of tobacco BY-2 cells are not altered by exposure to near weightlessness in space[J]. Planta,230(6):1 129-1 140
Sobol M. Kordyum E. 2009. Distribution of calcium ions in cells of the root distal elongation zone under clinorotation[J]. Microgravity Sci Technol,21(1):179-185
Soh H,Auh C,Soh W-Y,et al. 2011. Gene expression changes in Arabidopsis seedlings during short-to long-term exposure to 3-D clinorotation[J]. Planta,234(2):255-270
Stutte G,Monje O,Goins G,et al. 2005. Microgravity effects on thylakoid,single leaf,and whole canopy photosynthesis of dwarf wheat[J]. Planta,223(1):46-56
Sychev VN,Levinskikh MA,Podolsky IG. 2008. Biological component of life support systems for a crew in long-duration space expeditions[J]. Acta Astronaut,63(7):1 119-1 125
van Loon JJWA. 2007. Some history and use of the random positioning machine,RPM,in gravity related research[J]. Adv Space Res,39(7):1 161-1 165
Yuda T,Miyamoto K,Shimazu T,et al. 2000. Effects of microgravity conditions simulated by a 3-dimensional clinostat on osmotic concentrations and mechanical properties of cell walls in relation to plant growth and development[J]. Biol Sci Space,14(3):186-187


收稿日期: 2014-03-27修回日期: 2014-07-09
基金项目: 河北省高等学校科学研究计划项目(Z2013004)
作者简介: 许冬倩(1978-),女,河北保定市人,博士,讲师,研究方向为空间生命科学,(E-mail)winterian@126.com。 *通讯作者: 郭双生,博士,研究员,研究方向为受控生态和生命保障系统,(E-mail)guoshuangsheng@tom.com。
更新日期/Last Update: 2015-03-08