我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

不同树高对荷木液流密度、整树蒸腾量和时滞的效应(PDF)

《广西植物》[ISSN:1000-3142/CN:45-1134/Q]

期数:
2015年01期
页码:
53-60
栏目:
植物生态与生物地理学
出版日期:
2015-03-27

文章信息/Info

Title:
Effects of tree height on sap flow, whole-tree transpiration and time lag of Schima superba
文章编号:
1000-3142(2015)01-0053-08
作者:
赵秀华12 赵 平1* 朱丽薇1 倪广艳1 牛俊峰1
1. 中国科学院华南植物园, 广州 510650; 2. 中国科学院大学, 北京 100049
Author(s):
ZHAO Xiu-Hua12 ZHAO Ping1* ZHU Li-Wei1 NI Guang-Yan1 NIU Jun-Feng1
1. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
荷木人工林 树高 液流密度 蒸腾 时滞
Keywords:
Schima superba plantation tree height sap flow transpiration time lag
分类号:
Q944.3; Q945.79
DOI:
10.11931/guihaia.gxzw201405036
文献标识码:
A
摘要:
人工林面积不断增大,这不仅能解决由于森林砍伐引起的一系列社会问题,而且还对解决水土保持、二氧化碳减排等环境问题起到重要作用。了解人工林的生长特性和蒸腾效率,对植被生长、恢复和管理有着重要意义。为此,该研究连续监测了华南地区12棵不同高度荷木人工林的液流密度,对样树以高度划分等级,采取错位相关法分析不同高度等级胸高处液流与冠层蒸腾的时滞效应。结果表明:气候环境相同时,所有样树胸高处液流日格型相似; 荷木林蒸腾量优势木>中间木>劣势木,所有树木湿季月蒸腾量大于干季月蒸腾量; 不同高度等级之间时滞差异显著,劣势木时滞50 min,优势木和中间木时滞20 min; 所有样树干湿季时滞差异不显著,同一高度级两季节时滞差少于10 min。这些说明:在干季华南地区土壤水分仍然相对较充足,植物输水阻力没有受到土壤水分降低和长距离水分传导的影响; 中间木和优势木时滞短,水力阻力小,蒸腾量大并占据着林段的有利资源; 劣势木长势低矮,时滞长,导管阻力大,蒸腾量少,光合作用需要的水热资源少,所以回馈根部的营养物质少,不均衡的营养循环使得林段分化愈明显,劣势木将逐渐从林段中被淘汰。该文指出在荷木人工林生长后期,对于长势低矮,生命力极弱的劣势木应定期砍伐,这样能增加优势木和中间木对光照及水分等有利资源的分配,提高林分质量,增加林地生产力。
Abstract:
Plantation area has been increasing in recent years,which is not the only effective solution for the social consequences caused by forest deforestation but also plays an important role in solving many environmental problems,like erosion control and carbon dioxide reduction. It has great significance for plantation growth,restoration and management by understanding their transpiration efficiency and growth characteristic of plantation. In order to do that,sap flow of 12 trees were measured in a Schima superba plantation in South China. All sample trees were grouped according to height into three ranks:dominant tree,intermediate tree and suppressed tree. Cross-correlation analysis was performed to estimate time lag between sap flux density and PAR measurement being a substitute for canopy transpiration at this site. It showed that in those days with similar environmental conditions,daily courses of sap flow trends at breast height were similar among all the trees. No matter at daily or monthly scale,the sap flux density and whole-tree transpiration of all measured trees were ranked as:dominant tree>intermediate tree>suppressed tree; and at the seasonal scale,the amount of transpiration was higher in wet season than that in dry season. The time lag showed significant variation across different ranges of height,in which time lag of dominant tree and intermediate tree was 20 min,and that of suppressed tree was 50 min. It did not show any significant variation in different seasons,and the differences of time lag in the same height rank were less than 10 min in both wet and dry seasons. This suggested that the soil moisture was relatively sufficient in the dry season in South China,and that the hydraulic resistance of sapwood was not altered by decline of soil moisture and the long distance of conductive pathway. In our site,the time lags of the taller dominant trees and intermediate trees were short with high amount of transpiration and little transport resistance because they took a favorable position in the stand. However,the time lag of the shorter suppressed trees was large with fewer amounts of transpiration due to great transport resistance. They not only could not acquire sufficient resources of water and light for photosynthesis,but also returned limited photosynthate to the root system belowground. The non-uniform nutrient cycle resulted in obvious differentiations within the S. superb,and consequently the suppressed trees would be eliminated from the stand. This paper pointed out that suppressed trees which grow smaller and weaker could be cut regularly in the later growth stage of Schima superb. It could increase the resource distribution of enough water and light for plant photosynthesis,and that improved the stand quality and increases stand productive capacity.

参考文献/References

Berbigier P,Bonnefond JM,Loustau D,et al. 1996. Transpiration of a 64-year old maritime pine stand in Portugal[J]. Oecologia,107:43-52
Campbell GS,Norman JM,1998. An Introduction to Environmental Biophysics[M]. Springer-Verlag,New York,Berlin,Heidelberg:36-51
Caspari HW,Green SR,Edwards WRN. 1993. Transpiration of well-watered and water-stressed Asian pear trees as determined by lysimetry,heat-pulse,and estimated by a Penman-Monteith model[J]. Agric For Meteorol,67:13-27
Fang JY,Chen AP,Peng CH,et al. 2001. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science,292:2 320-2 322
Granier A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J]. Tree Physiol,3:309-320
Fang ZS(方升佐),Tian Y(田野). 2012. The relationship between biodiverity and productivity in the artificial plantation ecosystem(人工林生态系统生物多样性与生产力的关系)[J]. J Nanjign For Univ(南京林业大学学报),36(4):1-6
Goldstein G,Andrade JL,Mejinzer FC,et al. 1998. Stem water storage and diurnal patterns of water use in tropical forest canopy trees[J]. Plant Cell Environ,21:397-406
Hooper DU,Chapin FS,Ewel JJ,et al. 2005. Effects od biodiversity on ecosystem functioning:a consensus of current knowledge[J]. Ecol Monogr,75(1):3-35
Jiménez MS,Cermák J,Kucera J,et al. 1996. Laurel forests in Tenerife Canary Islands the annual course of sap flow in Laurus trees and stand[J]. J Hydrol,183:307-321
Kumagai T. 2001. Modeling water transportation and storage in sapwood-model evelopment and validation[J]. Agric For Meteorol,109:105-115
Kume T,Komatsu H,Kuraji K,et al. 2008. Less than 20-min time lags between transpiration and stem sap flow in emergent trees in a Bornean tropical rainforest[J]. Agric For Meteorol,148:1 181-1 189
Li JY(李吉跃),Zhai HB(翟洪波). 2000. Hydraulic architecture and drought resistance of woody plants(木本植物水力结构与抗旱性)[J]. Chin J Appl Ecol(应用生态学报),11(2):301-305
Liu XJ(刘晓静),Zhao P(赵平),Wang Q(王权),et al. 2009. Effects of tree height on whole-tree water use of Acacia mangium (树高对马占相思整树水分利用的效应)[J]. Chin J Appl Ecol(应用生态学报),20(1):13-19
Mei TT(梅婷婷),Zhao P(赵平),Wang Q(王权),et al. 2010. Effects of tree diameter at breast height and soil moisture on transpiration of Schima superba based on sap flow pattern and normalization(基于液流格型特征值和标准化方法分析胸径和土壤水分对荷木液流的影响)[J]. Chin J Appl Ecol(应用生态学报),21(10):2 457-2 464
Mei TT(梅婷婷),Ni GY(倪广艳),Wang Q(王权),et al. 2012. Effect of stem diameter at breast height on skewness of sap flow pattern and time lag(树木胸径大小对树干液流变化格局的偏度和时滞效应)[J]. Acta Ecol Sin(生态学报),32(22):7 018-7 026
Nobel PS,Jordan PW. 1983. Transpiration stream of desert species resistances and capacitances for a C3,a C4,and a CAM plant[J]. J Exp Bot,34(10):1 379-1 391
O’Brien JJ,Oberbauer SF,Clark DB. 2004. Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest[J]. Plant Cell Environ,27:551-567
Phillips N,Nagchaudhuri A,Oren R,et al. 1997. Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow[J]. Trees,11:412-419
Phillips N,Oren R,Zimmermann R,et al. 1999. Temporal patterns of water flux in trees and lianas in a Panamanian moist forest[J]. Trees,14:116-123
Sch?fer KVR,Oren RD,Tenhunen J. 2000. The effect of tree height on crown level stomatal conductance[J]. Plant Cell Environ,23:365-375
Scherer-Lorenzen M,Palmborg C,Prinz A,et al. 2003. The role of plant diversity and composition for nitrate leaching in grasslands[J]. Ecology,84(6):1 539-1 552
Schulze ED,Cermák J,Matyssek R,et al. 1985. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees-a comparison of xylem flow,porometer and cuvette measurements[J]. Oecologia,66:475-483
Shen LH(申李华),Zhang ZQ(张志强),Liu CF(刘晨峰),et al. 2007. Sap flow of P.�/i>215;euramericanacv plantation trees in sandy soil(沙地杨树人工林树干液流特征)[J]. Sci Soil Water Cons(中国水土保持科学),5(1):88-92
Steinbeiss S,Beler H,Engels C,et al. 2008. Plant diversity positively affects short-term soil carbon storage in experimental grasslands[J]. Glob Chang Biol,14(12):2 937-2 949
Teskey RO,Sheriff DW. 1996. Water use by Pinus radiata trees in a plantation[J]. Tree Physiol,16:273-279
Tyree MT,Ewers FW. 1991. The hydraulic architecture of trees and other woody plants[J]. New Phytol,119:345-360
Wang H(王华),Zhao P(赵平),Cai XA(蔡锡安),et al. 2008. Tim e lag effect between stem sap flow and photosynthetically active radiation,vapor pressure deficit of Acacia mangium(马占相思树干液流与光合有效辐射和水汽压亏缺间的时滞效应)[J]. Chin J Appl Ecol(应用生态学报),19(2):225-230
Wullschleger SD,Meinzer FC,Vertessy RA. 1998. A review of whole-plant water use studies in trees[J]. Tree Physiol,18:499-512
Zhao P(赵平),Rao XQ(饶兴权),Ma L(马玲), et al. 2005. Application of Granier’s sap flow system in water use of Acacia magnum forest(Granier树干液流测定系统在马占相思的水分利用研究中的应用)[J]. J Trop Subtrop Bot(热带亚热带植物学报), 13(6):457-468
Zhao P(赵平),Rao XQ(饶兴权),Ma L(马玲),et al. 2006a. Responses of canopy stomatal conductance of Acacia mangium forest to environmental driving factors(马占相思林冠层气孔导度对环境驱动因子的响应)[J]. Chin J Appl Ecol(应用生态学报),17(7):1 149-1 156
Zhao P(赵平),Rao XQ(饶兴权),Ma L(马玲),et al. 2006b. The variations of sap flux density and whole-tree transpiration across individuals of Acacia mangium(马占相思_Acaciamangium_树干液流密度和整树蒸腾的个体差异)[J]. Acta Ecol Sin(生态学报),26(12):4 050-4 058
Zhao P(赵平),Rao XQ(饶兴权),Ma L(马玲),et al. 2006c. Sap flow-scaled stand transpiration and canopy stomatal conductance in an Acacia Mangium forest(基于树干液流测定值进行尺度扩展的马占相思林段蒸腾和冠层气孔导度)[J]. J Plant Ecol(植物生态学报),30(4):655-665
Zhou CM(周翠鸣),Zhao P(赵平),Ni GY(倪广艳),et al. 2011.
Whole-tree water use characteristics of Schima superba in wet and dry seasons based on sap flow and soil leaf water potential gradient analysis(基于树干液流和土壤-叶片水势梯度分析荷木干湿季整树水分利用特征)[J]. Chin J Ecol(生态学杂志),30(12):2 659-66
Zhou CM(周翠鸣),Zhao P(赵平),Ni GY(倪广艳),et al. 2012. Water recharge through nighttime stem sap flow of Schima superba in Guangzhou region of Guangdong Province,South China:affecting factors and contribution to transpiration(广州地区荷木夜间树干液流补水的影响因子及其对蒸腾的贡献)[J]. Chin J Appl Ecol(应用生态学报),23(7):1-8 hui Agric Sci(安徽农业科学),38(20):10 580-10 581
Mondal TK. 2002. Assessment of genetic diversity of tea(Camellia sinensis(L.)O. Kuntze)by inter-simple sequence repeat polymerase chain reactinn[J]. Euphytica,128:307-315
Nagaraju J,Kathirvel M,Subbaiah EV,et al. 2002. FISSR-PCR: A simple and sensitive assay for high throughput genotyping and genetic mapping[J]. Mol & Cell Prob,16:67-72
Rohlf FJ. 1994. NTSYS2PC Version 2. 10. New York:Appllied Biostatistics Inc Shi YT(石颜通),Zhou B(周波),Zhang XX(张秀新),et al. 2012. 2013. Assessment of Genetic Diversity and Relationship of 89 Tree Peony Cultivars from Different Provenances(牡丹89个不同种源品种遗传多样性和亲缘关系研究)[J]. Acta Hortic Sin(园艺学报),39(12):2 499-2 506
Zhang Q(张强),Wang HJ(王慧娟),Li YM(李艳敏),et al. 2008. The phylogenetic relationships of eight Acer species based on evidences from ITS sequences(几种槭属植物亲缘关系的ITS序列分析)[J].Chin Agric Sci Bull(中国农学通报),24(10):409-412
Zhao B(赵冰),Zhang QX(张启翔). 2008. Genetic diversity of germplasm resources of Chimonanthus praecox based on ISSR markers(蜡梅种质资源遗传多样性的ISSR分析)[J]. Bull Bot Res(植物研究),28(3):315-320
Zietkiewiez E,Rafalski A,Labuda D. 2012. Genome fingerprinting by simple sequence repeat(SSR)anchored polymerase chain reaction amplification[J]. Genomics,20(2):176-183

备注/Memo

备注/Memo:
收稿日期: 2014-08-15修回日期: 2014-10-03
基金项目: 国家自然科学基金(41030638; 41275169); 广东省自然科学基金面上项目(S2012020010933)。
作者简介: 赵秀华(1988-),女,山东寿光市人,博士研究生,主要从事植物生态系统生理学研究,(E-mail)ainit99@163.com。 *通讯作者: 赵平,博士,研究员,主要从事植物生理生态学研究,(E-mail)zhaoping@scib.ac.cn。
更新日期/Last Update: 2015-03-08