我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

水稻OsGSTLc启动子的分离和鉴定(PDF)

《广西植物》[ISSN:1000-3142/CN:45-1134/Q]

期数:
2014年02期
页码:
256-262
栏目:
学科栏目
出版日期:
2014-05-15

文章信息/Info

Title:
Isolation and identify of the rice OsGSTLc promoter
作者:
胡廷章 杨俊年 陈再刚 吴应梅
重庆三峡学院 生命科学与工程学院, 重庆 404100
Author(s):
HU Ting-Zhang* YANG Jun-Nian CHEN Zai-Gang WU Ying-Mei
School of Life Sciences and Engineering, Chongqing Three Gorges University, Chongqing 404100, China
关键词:
OsGSTLc 诱导 缺失分析 启动子 水稻
Keywords:
OsGSTLc induction deletion analysis promoter rice
分类号:
Q71
DOI:
10.3969/j.issn.1000-3142.2014.02.022
文献标识码:
A
摘要:
半定量RT-PCR分析表明,OsGSTLc在水稻根中的表达受绿磺隆的诱导。从水稻基因组中分离到的OsGSTLc读码框上游2 2171 bp序列,在起始密码ATG上游-86 bp处有CAAT-box,但在CAAT-box与读码框之间没有典型的TATA-box。因此,OsGSTLc启动子是无TATA框启动子。将OsGSTLc启动子5’-端系列缺失后,分别与GUS报告基因融合,获得GSTL2171::GUSGSTL1761::GUSGSTL962::GUSGSTL525::GUS表达载体,利用农杆菌介导转化水稻,获得转基因水稻,均能启动下游GUS报告基因的表达。氯磺隆处理后,转入GSTL2171::GUSGSTL1761::GUSGSTL962::GUS的水稻植株根部的GUS活性明显增加。氯磺隆诱导的应答元件在-962~-525 bp的范围内。
Abstract:
The expression of OsGSTLc in rice roots was induced by chlorsulfuron through semi-quantitative RT-PCR analysis demonstrated. A 2 171 bp upstream sequence of the translation start codon ATG of OsGSTLc gene was isolated from the genomic DNA of rice,which contained a putative CAAT-box at position -86 bp upstream of ATG,but there wasn’t TATA-box between the CAAT-box and ATG. Therefore,OsGSTLc promoter was a TATA-less promoter. To define the core promoter sequence,a series of 5’ truncation derivatives of GST2171 were fused to a GUS reporter gene to construct GSTL2171::GUS,GSTL1761::GUS,GSTL962::GUS and GSTL525::GUS,respectively. The four fusion genes were introduced into rice plants by Agrobacterium-mediated transformation,all promoter fragments with 5’-deletion drived successfully the expression of GUS report gene. Quantitative fluorescence assays showed that the GUS activities in the roots of GSTL2171::GUS,GSTL1761::GUS and GSTL962::GUS transgenic rice seedlings were upregulated by chlorsulfuron. The transcriptional activation element of chlorsulfuron may be located between positions -962 and -525.The expression of OsGSTLc in rice roots was induced by chlorsulfuron through semi-quantitative RT-PCR analysis demonstrated. A 2 171 bp upstream sequence of the translation start codon ATG of OsGSTLc gene was isolated from the genomic DNA of rice,which contained a putative CAAT-box at position -86 bp upstream of ATG,but there wasn’t TATA-box between the CAAT-box and ATG. Therefore,OsGSTLc promoter was a TATA-less promoter. To define the core promoter sequence,a series of 5’ truncation derivatives of GST2171 were fused to a GUS reporter gene to construct GSTL2171::GUS,GSTL1761::GUS,GSTL962::GUS and GSTL525::GUS,respectively. The four fusion genes were introduced into rice plants by Agrobacterium-mediated transformation,all promoter fragments with 5’-deletion drived successfully the expression of GUS report gene. Quantitative fluorescence assays showed that the GUS activities in the roots of GSTL2171::GUS,GSTL1761::GUS and GSTL962::GUS transgenic rice seedlings were upregulated by chlorsulfuron. The transcriptional activation element of chlorsulfuron may be located between positions -962 and -525.

参考文献/References

Chen W,Chao G,Singh KB. 1996. The promoter of a H2O2-inducible,Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites[J]. Plant J,10(6):955-66
Chi Y,Cheng Y,Vanitha J,et al. 2011. Expansion mechanisms and functional divergence of the glutathione s-transferase family in sorghum and other higher plants[J]. DNA Res,18(1):1-16
Davies J,Caseley JC. 1999. Herbicide safeners:a review[J]. Pestic Sci,55:1043-1058
Dean JD,Goodwin PH,Hsiang T. 2005. Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance[J]. J Exp Bot,56:1 525-1 533
Dixon DP,Cole DJ,Edwards R. 2000. Characterisation of a zeta class glutathione transferase from Arabidopsis thaliana with a putative role in tyrosine catabolism[J]. Arch Biochem Biophys,384:407-412
Dixon DP,Davis BG,Edwards R. 2002a. Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana[J]. J Biol Chem,277(34):30 859-30 869
Dixon DP,Lapthorn A,Edwards R. 2002b. Plant glutathione transferases[J]. Genome Biol,3(3):30 004. 1-30 004. 10
Duan CJ(段承杰),Luo DP(罗荡平),Luo XM(罗雪梅),et al. 2012. Over-expression of Arabidopsis thaliana AtNPR1 gene in rice enhances the rice resistance to bacterial blight and blast diseases(转拟南芥AtNPR1 基因增强水稻对水稻白叶枯病和稻瘟病的抗性)[J]. Guihaia(广西植物),32(6):800-805
Edwards R,Dixon DP. 2000. The role of glutathione transferases in herbicide metabolism[M]//Cobb AH,Kirkwood RC. Herbicides and their mechanisms of action. Sheffield:Sheffield Academic Press:33-71
Edwards R,Dixon DP. 2005. Plant glutathione transferases[J]. Methods Enzymol,401:169-186
Fridlender M,Harrison K,Jones JDG,et al. 1996. Repression of the Ac transposase gene promoter by Ac transposase[J]. Plant J,9:911-917
Hu TZ(胡廷章),Zhou DX(周大祥),Luo K(罗凯). 2007. Structure and biological function of glutathione transferases and their genes in plants(植物谷胱甘肽转移酶的结构与功能及其基因表达)[J]. Plant Physiol Commun(植物生理学通讯),43(1):195-200
Hofgen R,Willmitzer L. 1988. Storage of competent cells for Agrobacterium transformation[J]. Nucleic Acids Res,16(20):9 877
Hu TZ. 2008. OsLEA3,a late embryogenesis abundant protein gene from rice,confers tolerance to water deficit and salt stress to transgenic rice[J]. Russ J Plant Physiol,55(4):530-537
Jefferson RA,Kavanagh TA,Bevan MW. 1987. GUS fusions:?-glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. EMBO J,6(13):3 901-3 907
Loyall L,Uchida K,Braun S,et al. 2000. Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures[J]. Plant Cell,12:1 939-1 950
McElroy D,Rothenberg M,Wu R. 1990. Structural characterization of a rice actin gene[J]. Plant Mol Biol,14(2):163-171
McGonigle B,Keeler SJ,Lau SM,et al. 2000. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize[J]. Plant Physiol,124:1 105-1 120
Mohsenzadeh S,Esmaeili M,Moosavi F,et al. 2011. Plant glutathione S-transferase classification,structure and evolution[J]. Afr J Biotechnol,10(42):8 160-8 165
Moons A. 2003. Osgstu3 and osgtu4,encoding tau class glutathione S-transferases,are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots[J]. FEBS Lett,553(3):427-432
Moons A. 2005. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases(GSTs)[J]. Vitam Horm,72:155-202
Robertson N,Paine JA,Sonnewald U,et al. 2000. Expression of the chemically inducible maize GST-27 promoter in potato[J]. Potato Res,43:335-345
Shimabukuro RH,Swanson HR,Walsh WC. 1970. Glutathione conjugation. Atrazine detoxification mechanism in corn[J]. Plant Physiol,46:103-107 Soranzo N,Sari Gorla M,Mizzi L,T et al. 2004. Organisation and structural evolution of the rice glutathione S-transferase gene family[J]. Mol Genet Genomics,271(5):11-21
Urbanek H,Majorowicz H,Zalewski M,et al,2005. Induction of glutathione S-transferase and glutathione by toxic compounds and elicitors in reed canary grass[J]. Biotechnol Lett,27:911-914
Wagner U,Edwards R,Dixon DP,et al. 2002. Probing the diversity of the Arabidopsis glutathione S-transferase gene family[J]. Plant Mol Biol,49(5):515-532
Zuo YC(左永春),Li QZ(李前忠). 2009. Analysis of plant TATA and TATA-less promoters by using sequence and structure features(基于序列和结构特征分析植物TATA和TATA-less启动子)[J]. Prog Biochem Biophys(生物化学与生物物理进展),36(7):863-871
Chen W,Chao G,Singh KB. 1996. The promoter of a H2O2-inducible,Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites[J]. Plant J,10(6):955-66
Chi Y,Cheng Y,Vanitha J,et al. 2011. Expansion mechanisms and functional divergence of the glutathione s-transferase family in sorghum and other higher plants[J]. DNA Res,18(1):1-16
Davies J,Caseley JC. 1999. Herbicide safeners:a review[J]. Pestic Sci,55:1043-1058
Dean JD,Goodwin PH,Hsiang T. 2005. Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance[J]. J Exp Bot,56:1 525-1 533
Dixon DP,Cole DJ,Edwards R. 2000. Characterisation of a zeta class glutathione transferase from Arabidopsis thaliana with a putative role in tyrosine catabolism[J]. Arch Biochem Biophys,384:407-412
Dixon DP,Davis BG,Edwards R. 2002a. Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana[J]. J Biol Chem,277(34):30 859-30 869
Dixon DP,Lapthorn A,Edwards R. 2002b. Plant glutathione transferases[J]. Genome Biol,3(3):30 004. 1-30 004. 10
Duan CJ(段承杰),Luo DP(罗荡平),Luo XM(罗雪梅),et al. 2012. Over-expression of Arabidopsis thaliana AtNPR1 gene in rice enhances the rice resistance to bacterial blight and blast diseases(转拟南芥AtNPR1 基因增强水稻对水稻白叶枯病和稻瘟病的抗性)[J]. Guihaia(广西植物),32(6):800-805
Edwards R,Dixon DP. 2000. The role of glutathione transferases in herbicide metabolism[M]//Cobb AH,Kirkwood RC. Herbicides and their mechanisms of action. Sheffield:Sheffield Academic Press:33-71
Edwards R,Dixon DP. 2005. Plant glutathione transferases[J]. Methods Enzymol,401:169-186
Fridlender M,Harrison K,Jones JDG,et al. 1996. Repression of the Ac transposase gene promoter by Ac transposase[J]. Plant J,9:911-917
Hu TZ(胡廷章),Zhou DX(周大祥),Luo K(罗凯). 2007. Structure and biological function of glutathione transferases and their genes in plants(植物谷胱甘肽转移酶的结构与功能及其基因表达)[J]. Plant Physiol Commun(植物生理学通讯),43(1):195-200
Hofgen R,Willmitzer L. 1988. Storage of competent cells for Agrobacterium transformation[J]. Nucleic Acids Res,16(20):9 877
Hu TZ. 2008. OsLEA3,a late embryogenesis abundant protein gene from rice,confers tolerance to water deficit and salt stress to transgenic rice[J]. Russ J Plant Physiol,55(4):530-537
Jefferson RA,Kavanagh TA,Bevan MW. 1987. GUS fusions:?-glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. EMBO J,6(13):3 901-3 907
Loyall L,Uchida K,Braun S,et al. 2000. Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures[J]. Plant Cell,12:1 939-1 950
McElroy D,Rothenberg M,Wu R. 1990. Structural characterization of a rice actin gene[J]. Plant Mol Biol,14(2):163-171
McGonigle B,Keeler SJ,Lau SM,et al. 2000. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize[J]. Plant Physiol,124:1 105-1 120
Mohsenzadeh S,Esmaeili M,Moosavi F,et al. 2011. Plant glutathione S-transferase classification,structure and evolution[J]. Afr J Biotechnol,10(42):8 160-8 165
Moons A. 2003. Osgstu3 and osgtu4,encoding tau class glutathione S-transferases,are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots[J]. FEBS Lett,553(3):427-432
Moons A. 2005. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases(GSTs)[J]. Vitam Horm,72:155-202
Robertson N,Paine JA,Sonnewald U,et al. 2000. Expression of the chemically inducible maize GST-27 promoter in potato[J]. Potato Res,43:335-345
Shimabukuro RH,Swanson HR,Walsh WC. 1970. Glutathione conjugation. Atrazine detoxification mechanism in corn[J]. Plant Physiol,46:103-107
Soranzo N,Sari Gorla M,Mizzi L,T et al. 2004. Organisation and structural evolution of the rice glutathione S-transferase gene family[J]. Mol Genet Genomics,271(5):11-21
Urbanek H,Majorowicz H,Zalewski M,et al,2005. Induction of glutathione S-transferase and glutathione by toxic compounds and elicitors in reed canary grass[J]. Biotechnol Lett,27:911-914
Wagner U,Edwards R,Dixon DP,et al. 2002. Probing the diversity of the Arabidopsis glutathione S-transferase gene family[J]. Plant Mol Biol,49(5):515-532
Zuo YC(左永春),Li QZ(李前忠). 2009. Analysis of plant TATA and TATA-less promoters by using sequence and structure features(基于序列和结构特征分析植物TATA和TATA-less启动子)[J]. Prog Biochem Biophys(生物化学与生物物理进展),36(7):863-871

备注/Memo

备注/Memo:

收稿日期: 2013-07-09修回日期: 2013-10-08
基金项目: 重庆市自然科学基金(cstc2011jjA80027,cstc2012jjA80009); 重庆市教育委员会科学技术研究项目(KJ121106,KJ131101)。
作者简介: 胡廷章,博士,教授,主要从事生物化学与分子生物学研究,(E-mail)tzhu2002@yahoo.com.cn。 *通讯作者
更新日期/Last Update: 2014-04-10